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Abstract

Determination of values of stocks and indices is very challenging and a very important
aspect in finance. Knowing the value of a stock price, for instance, can be very vital in
pricing various financial derivatives such as options. On the other hand, indices are useful
tools for tracking stock market trends. By studying the pattern of index values over time,

investors might gain insight that would help them make better investment decisions.

Various attempts have been made to predict future stock prices and index values but these
have yielded mixed results due to the stochastic nature of financial markets. Despite the
fact that there has been growing academic interest in the stock market, it still remains
elusive as to what the next day’s price of a stock, in particular, and value of an index, in
general, will be even when the prices of the present and previous days are known. One
of the popular approaches of pricing options, for instance, has been through the use of
the Black-Scholes model. This and various other approaches have placed normality at the
centre of the stochastic modeling. In this thesis, a statistical analysis on different indices
and stocks traded on the world’s major financial markets is performed and demonstrates,
through simulation, that Markov chains and the double gamma distribution play a central

role in the stochastic behaviour of prices on the stock market.
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CHAPTER 1

Introduction

1.1. The Behaviour of Stock Prices

One of today’s most vibrant financial institutions is probably the stock market. Over
the last few decades, what was once an exclusive club of the rich has swiftly turned into
every investor’s domain for growing wealth. The growing interest and advances in trading
technology have opened up markets such that today nearly anybody can own stocks. It
is no wonder, therefore, that major media publications dedicate entire pages or airtime
to report news on how major companies perform on the stock market. It has become
an institution of great interest to investors as well as the public at large (Granger and

Morgenstern (1970)).

While there has been growing interest and popularity in the stock market, it remains elusive
what the next day’s price of a stock will be even when the previous or present day’s price
is known. The determination of a stock price is a very important aspect in finance. The
most basic motivation for predicting stock prices is financial gain. Every stakeholder in
the world of finance seeks a position of advantage over competitors. It is not surprising
therefore that nearly all investors continuously look for opportunities that will earn them

high returns.

Since the price of derivatives is closely related to that of the underlying asset, the value of
the underlying asset such as a stock price is used in pricing derivatives (Hull (1989)). A
very popular and typical example is the pricing of options using the Black-Scholes model
and binomial option pricing model. Both involve the price of stock in their formulae as
shall be reviewed later. Other examples include swaps and futures/forwards (Hull (1989),

Joshi (2004) and Neftci(1996)).

Many attempts have been made to predict future stock prices but have failed due to
the unpredictable nature of financial markets. Fundamental and technical analyses of

predicting stock prices have used statistical modelling techniques. None of the techniques,
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however, has proven to predict stock prices consistently thereby casting a shadow on the

usefulness of many of the approaches.

Today most models do not focus on daily predictions of stock prices but other attributes.
For instance, the Log-Asymmetric Conditional Duration (Log-ACD) model of Bauwens
and Giot assists in finding the probability of a price increase (or decrease) at the time of

the last quotes announcement given the past information (Chou (2001)).

In 1900, Louis Bachelier used the Brownian motion concept to model prices of stocks and
commodities at the Paris Bourse. However the Brownian motion modelling has some flaws
when used to model stock prices since, firstly, as the stock price is assumed to be a normal
random variable, it can theoretically become negative. Secondly, stock prices often change

in proportion to their size but Brownian modelling does not take this property into account

(Ross (1996)).

In the next sections, we review basic definitions and concepts that are central to the study of
finance and financial mathematics. The work in this thesis embraces three major disciplines
which are finance, financial mathematics and stochastic processes. All the concepts and
definitions reviewed in this chapter can be found in standard texts in financial mathematics

and finance (see Hull (1989), Joshi (2004), Wilmott (1995), Ross (1999) and Neftci(1996)).

1.2. Financial Markets

As stocks are traded on the world’s financial markets, we will highlight important aspects
of this crucial medium in the world of finance. As commonly used in economics, we
define a financial market as a setup which allows people to trade money for securities or
commodities such as gold or other precious metals. Any commodity market, in general,
may be viewed as a financial market provided the traders’ objective is not immediate
consumption of the commodity but as a means of controlling consumption over time. The
market provides a medium through which funds are transferred from those who have excess
funds (savers, lenders) to those who have a shortage (borrowers). Financial markets are

classified according to the type of commodity being traded.

1.2.1. Capital Markets. We use the term long-term capital to refer to capital that
is invested or lent and borrowed for long periods of time spanning over five years in

most developed economies. Capital markets are markets for long-term capital and mainly



1.2. FINANCIAL MARKETS 3

consists of stock markets and bond markets. Stock markets provide financing through the
issuance of shares or common stock. On the other hand, bond markets provide financing

through the issuance of bonds. These are dealt with separately below.

1.2.1.1. Stock Market. In these markets the most commonly traded asset is the share
or stock in a company. A share in a company is a fraction of ownership in a particular
company and thus holders of shares own a fraction of a company (see Joshi (2004)). The
markets that facilitate the trading of shares are called stock or equity markets. As shares
are bought publicly on the equity market, companies traded on the stock market are public
limited companies (plc). While a shareholder owns part of a company, his or her liabilities
are limited to the amount invested, that is, the shareholder has no liability for its debts in
case it goes bankrupt. Further, the shareholder may make money in two ways. Firstly, if
the share price goes up, the shareholder may decide to sell the shares at a profit. Secondly,
the company pays dividends to shareholders, dispensing the profits made by the company

during a specified period.

The stock market is used to describe the totality of all stocks excluding bonds, securities
and derivatives. It is one of the most crucial areas of a market economy as it is an avenue
through which most companies raise their capital while providing income to investors. A
stock market is, however, different from a Stock Exchange. The latter involves bringing
buyers and sellers of stocks and securities together. Thus a stock exchange is a marketplace
where buyers and sellers meet and agree on a price. The oldest stock exchange is the New
York Stock Exchange having been formed in 1792 (Granger and Morgenstern (1970)).
Since then there has been a boom of stock exchanges with the most popular ones being the
European stock exchanges like the London Stock Exchange, the Tokyo Stock Exchange in
Asia and the Johannesburg Stock Exchange in Africa. The Malawi Stock Exchange was
inaugurated in 1995 but opened for business for the first time in November 1996 when it

first listed National Insurance Company Limited (NICO).

A stock market index, on the other hand, is a listing of stock and a statistical measure that
reflects the performance of a specific “basket” or portfolio of stocks considered to represent
a particular market or sector of the economy (Hull (1989)). Indices (or indexes) often serve
as barometers against which financial or economic performance is measured. For example,
the S&P 500 Composite Stock Price Index is an index of 500 stocks representing major

companies in leading industries within the U.S. economy. Stocks in the index are chosen
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for market size, liquidity, and industry group representation. We describe other major

indices and stocks studied in this thesis in subsection 3.1.1.

1.2.1.2. Bond Market. In general terms, a bond is a contract through which an investor
loans money to an entity (such as a company or government) that borrows the funds for
a defined period of time at a specified interest rate. The original sum of money borrowed,
called principal, is returned to the holder or investor at the expiration of a preagreed
period, called the maturity date. The holder receives interest payments, called coupons,
as compensation for the investor’s release of money that is borrowed from the public by
government or corporate institutions (see Joshi (2004)). If there is no coupon the bond is

known as a zero-coupon bond. These instruments are traded in bond markets.

1.2.2. Money Markets. The money market is the financial market whose aim is to
facilitate the lending and borrowing of money on a short-term basis. Money markets are
operated mainly by banks and other financial institutions. These provide short term debt
financing and investment. Money market instruments are a form of short-term debts that
mature in less than one year. Examples of instruments that are traded on money markets
include drafts or bills of exchange, treasury bills, short-term loans also technically called
repurchase agreements and certificates of deposits. Certificates of deposits are issued by
a bank acknowledging that a certain amount of money has been deposited with it for a

certain period of time.

While money markets largely involve borrowing and lending by banks, other large
companies and nationalised industries as well as the government are also involved in
money market operations. Due to the liberalisation of building societies in most developed
economies, building societies have lately become major participants in the money market
as well. In Malawi, what was formerly called New Building Society has now turned into a

fully fledged commercial bank.

1.2.3. Derivatives Markets. A financial derivative, also called contingent claim is
a security whose value depends on the values of other underlying variables or assets. An
example of an underlying asset is the value of stock while some examples of financial
derivatives are highlighted below. The derivatives markets are markets for financial
derivatives. Financial derivatives provide instruments for the management of financial

risk (Hull (1989)).
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Three common examples of derivatives are: futures and forwards, swaps and options.
Futures and forwards are contracts to buy or sell an asset at a specified price at a known
future date. On the other hand, swaps are agreements where parties agree to exchange
cash flows involving various currencies, interest rates and other financial assets at a future
agreed date. A definition of options and a thorough treatment of the theory of options can
be found in section (1.4). Financial markets on which options and futures/forwards are

traded are called options markets and forwards/futures markets respectively.

1.2.4. Insurance Markets. Insurance is a form of risk management that is primarily
used to hedge against the risk of potential financial or material loss. Insurance is defined as
the equitable transfer of the risk of a potential loss, from one entity to another, in exchange
for a premium and duty of care. The insurance markets facilitate the redistribution of
various risks through the trading of various insurance products normally referred to as

policies.

There are many types of insurance depending on the type of risk they are supposed to
hedge. Common insurance types include motor or car insurance which covers claims
against the driver and loss of or damage to the vehicle itself; property insurance which
provides protection against risks to property, such as fire, theft or weather damage; and
financial loss insurance which protects individuals and companies against various financial
risks such as protection from loss of sales if a fire in a factory prevented a company from
carrying out its business for a time. Other well known insurance types are life insurance,
health insurance, casualty insurance, travel insurance, professional indemnity insurance
and marine insurance. The most common and well known insurance in Malawi is the car
insurance since it is a legal requirement that all motor vehicles must be insured before they

are certified roadworthy.

1.2.5. Foreign Exchange Markets. This is probably the largest financial market in
terms of trading volume and the number of participants involved in the market. Foreign
exchange markets are found wherever one currency is traded for another. In Malawi, in
addition to the regular commercial banks, all major towns have foreign exchange markets
commonly known as forex bureaus. The primary role of foreign exchange markets is the

facilitation of the trading of foreign exchange.

Brief summaries of financial markets can be found in Wilmott et al (1995) and Joshi (2004).
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The main question for investors and other market participants is what drives prices in any
financial market. The answer to such a question is not obvious, however, an attempt to
answer it may be provided by the Efficient Market Hypothesis which is reviewed in the

next section.

1.3. Efficient Market Hypothesis

The Efficient Market Hypothesis (EMH) is a concept that claims that the present price of
an asset incorporates and reflects all the information presently available including historical
information (see Ross (1999), Joshi (2004) and Cockraine (2001)). As a consequence old
information cannot be used to foretell future price movements. Since the acquisition of new
information is highly competitive, it is not easy to make quick profits (Cockraine (2001)).
However critics of the concept claim that past price movements reflect information that
has not been universally recognized but will affect future prices. The general belief of the
critics is that there is no prior reason why future price movements should be independent

of past movements (see Ross (1999)).

There are three forms of the efficient market hypothesis and these are Weak form of market
efficiency, Semi-strong form of market efficiency and Strong form of market efficiency.

These are reviewed in the next subsection.

1.3.1. Weak form of market efficiency. The “weak” form states that all past
market prices and data are fully reflected in securities prices. Any information contained
in previous prices has been analysed and acted on by market forces and consequently
securities such as stocks are neither under-valued nor over-valued. Proponents of weak
form of market efficiency claim that a study and analysis of trends in historical prices,

known as technical analysis, cannot help in the determination of future market prices.

1.3.2. Semi-strong form of market efficiency. The “semi-strong” form asserts
that all publicly available information is fully reflected in securities prices. In a “semi-
strong” market, current prices efficiently adjust to information that is publicly available.
Since all publicly available information has been thoroughly analysed, assessed and acted
upon by a large number of market players, both fundamental and technical analyses are
ineffective. Fundamental analysis is the analysis of financial information such as company

earnings and asset values to help investors select undervalued stocks (see Malkiel (2003)).
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In addition, fundamental analysis involves studying the prospects for a company’s business

(Brealey (1983)).

1.3.3. Strong form of market efficiency. The “strong” form asserts that all
information is fully reflected in asset prices. In a “strong form” efficient market, any
attempt to make profitable use of monopolistic access to information would be fruitless
since any such information has already been incorporated into the market price of the
asset. Thus no one even with insider information could have any advantage over other

investors.

It is a difficult task to predict values of asset prices. The historical prices are, however,
there as a financial time series (Wilmott etal (1995)). The financial time series can be
examined to suggest the likely jumps in asset prices, their mean and variance, and the
likely distribution of assets. These qualities may be determined by a statistical analysis of
historical data. Malkiel (2003) presents the arguments for and against the efficient market
hypothesis but concludes that stock markets are far more efficient and far less predictable
than what some recent academic papers suggest. On the other hand, while prices on
average adjust quickly to firm-specific information a common finding in event studies is
that the dispersion of returns increases around information events. Previous work done by
various researchers shows that during mergers, stock prices of acquiring firms do not often
react to merger announcements but later drift slowly down. Other studies suggest that

stock prices do not react swiftly to specific information (see Fama (1991)).

Samuelson (1973) suggests that expected future price must be approximately equal to
present price otherwise the present price would be different from what it is. If there were
profits to be made, which all market participants could recognise, this would be acted upon
quickly thereby raising or lowering the present price. As market participants’ expectations
of the future are different, they guess differently and this turns out to be the major reason
why there are transactions in the marketplace in which one individual is buying and another

is selling (Samuelson (1973)).

The one major aspect of asset prices that can be discerned from the last two sections is
that asset prices are generally difficult to predict. The uncertainty in future asset prices

poses a big problem for investors as any investment decision will harbour some level of
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risk. To manage risk, some investors use options (see Joshi (2004)). In the next section,

we hightlight the main aspects of the theory of options.

1.4. The Theory of Options

In this section we look at the theory of options. The major motivation for reviewing options
is that the values of some financial instruments, such as stock, go up and down. Due to
their erratic behaviour stocks may be viewed as assets that harbour risk. In the world of
finance, derivative products, such as options, are financial instruments that are used to
hedge against risk. However, the values of all financial derivatives are contingent on the
value of the underlying asset, in our case, stock. It is not surprising therefore that major
option pricing models involve the price of stock in their formulae. Hence as the central
theme of this thesis is stock pricing, it is imperative that we briefly review the theory of

options.

Financial markets, as avenues where buyers and sellers transact business, have become
more sophisticated as more complex transactions are being introduced (Wilmott et al
(1995)). However, all investment decisions harbour risk and hence require an assessment
and diversification of risk (see Joshi (2004)). In order to curtail risk, various financial
instruments are used. These include swaps, futures and forwards and options. A thorough
treatment of swaps and futures and forwards can be found in Hull (1989) and Neftci (1996).
Our review of options is based on Joshi (2004), Wilmott et al (1995) and Cox et al (1979).

1.4.1. The language of options. An option is a contract that gives the holder the
right, but not the obligation, to buy or sell some quantity of an underlying asset at a
prearranged price on or before a certain date. In our case the underlying asset is stock.
The price of an option is called the premium. The act of using the option is referred to
as exercising the option. The prearranged price is called the strike or exercise price while

the given date is termed the expiration or exercise or maturity date.

There are two basic types of options: call options and put options. A call option gives the
holder the right to buy while a put option gives the holder the right to sell some quantity of
the underlying asset at the prearranged price on or before a certain date. For call options,
the option is said to be in-the-money if the value of the underlying asset is above the strike

price, otherwise it is said to be out-of-the-money. On the other hand, a put option is
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in-the-money if the value of the underlying asset is below the strike price. The value by

which an option is in-the-money is called the intrinsic value.

Options are classified into two major groups depending on the time they are exercised.
Those options that are exercised on the maturity date itself are referred to as European
options while those that are exercised on any date before the specified date are called
American options. Option buyers are referred to as holders while option sellers are called
writers. The option buyer is also said to have taken the long position and the option seller

is said to have taken the short position.

1.4.2. The use of options. In general, there are two primary reasons why an investor
would want to use options. These are speculation and hedging. An option is a major
attraction in the management of risk since the maximum loss that can be incurred is the
initial premium (see Joshi (2004). Hedging is a means of cushioning an investment against
any risk or possible loss. In this way, options can be viewed as an insurance against any
adverse movements in the underlying asset. If the value of the underlying asset is less than
the exercise price, it does not benefit the call option holder to pay more for an asset that
can be purchased for less. On the other hand if the value of the underlying asset is more
than the strike price, the call option holder can exercise the option for a profit, that is,
buying the asset at the exercise price and selling it at the current market value which is
more than the price paid by the option holder. Thus, call option buyers hope that the
value of the underlying asset will increase substantially before the option expires. However,
buyers of put options hope that the value of the undelying asset plummets in order to make

a profit (Wilmott et al (1995)).

Investors who believe that the price of an asset can rise buy stocks in that company. If
the price of the asset rises, the investor makes money, otherwise the investor loses money.
Such investors are said to be speculating. In the case where the investor speculates that
the price will fall, one may opt to sell the asset or buy puts. When an investor sells shares
that he or she does not own he or she is said to be selling short and will thus profit from

a fall in shares. Explicit examples can be found in Hull (1989) and Joshi (2004).

1.4.3. Major Option Pricing Models. In this subsection, we review briefly two
discrete-time models for valuing options. We specifically review models for valuing

European options. The underlying asset is stock. Cox et al (1979) present simpler and
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more straightforward derivations of the two option pricing models that we review in this

thesis.

1.4.3.1. The Binomial Option Pricing Model. The Binomial Option Pricing Model is
premised on the assumption that the stock price S; at any time ¢ follows a multiplicative
binomial process over discrete periods without paying dividends and transaction costs.
Under the binomial process the price of stock in the next period may be in one of the two

states, 7up” or "down”. The movement of stock is observed over n periods.

Let S be the current price of stock and K be the exercise price. Suppose that in each period
the price of the stock can go up by u with probability p or down by d with probability 1-p.
Thus, if S is the current stock price, then during the next period the stock price may move

from S up to uS or down to dS. Then the price of stock at the end of n periods will be
(1.4.1) wd" 9,

where j is the number of times the stock is in an “up” state. If the option expires out-of-

money, that is,
(1.4.2) wd" IS < K

then the stock can be purchased for u?d"~7S since it is cheaper. Thus the call option has
no value. However, the option will have some value if value of stock is greater than the

exercise price, that is,
(1.4.3) wWd" IS > K.

(see Netfci (1996)). In this case one can buy the stock at K and sell it at a higher price of
w/d" 7S to make a profit of u/d" 7S — K. In view of this, market participants would place

a value of ©/d" 7S — K on the option, in particular,

(1.4.4) C = maz[u/d" 7S — K, 0].

Using the assumption that there are to be no arbitrage opportunities and the fact that the

call must finish in-the-money, the value of a call option is given by

S Gk P (L p) T WS — K]

jl(n—j

(1.4.5) C

rn ’

where:

C = the current value of the call,
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S = the current stock price,

K = the exercise price,

n = the number of periods remaining to expiration,
r = the one plus the riskless rate of interest,

a = the minimum number of upward movements required for the option to finish in-the-

r—d
u—d

u—r n!
u—d" jl(n—yj)!

money while p and 1 —p are defined as follows: p = and 1—p= represents

the number of paths the stock can take to reach a certain point in a binomial tree (see Cox

et al (1979)).

A relationship between the underlying asset and its options, called put-call-parity, is
used to find the corresponding value of a put option. If P is the value of a put option,

then using the put-call-parity
(1.4.6) S4+P—C=KeT,

the value of the European put option is found to be

(147) P 57 oGP’ (1= p)" K — u/d" 7S]

Tn

1.4.3.2. The Black-Scholes Model. Most texts present a derivation of the Black-Scholes
formula for calculating options by using the concept of arbitrage and the lognormal model
of asset price movements (see Willmott et al (1995), Joshi 2004, Hull (1989) and Ross

(1999)). The assumptions used and eventual derivation of the model using stochastic

differential equations can be found in Willmott et al (1995) and Hull (1989).

However, other authors derive the Black-Scholes formula as a limiting case of the Binomial
Option pricing formula in equation (1.4.5) (see Cox et al (1979)). Equation (1.4.5) can be

rewritten as

S ()P (1 — p)r Il dn !
(1.4.8) 0:5[3&“”0( i | — K [S, (——

=

T V(1 =)
Let the terms in the closed parenthesis be B; and By and noting that

LD iy -

rm r

(1.4.9)

This can be written as pl(1 — p,)" 7 where p, = (4)p and 1 — p, = (¢)(1 — p). Then the

equation can now be written as

(1410) C = SBl - K?"_nt.
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By letting the number of periods approach infinity, By and By converge to ®(d;) and ®(ds)
respectively. Thus

(1.4.11) C = S®(dy) — Kr "®(dy),

where

and

WP -F)T -t —
dy = — =d, —oVT —t.

®(+) is the cumulative probability distribution function for a standardised normal variable,

where C' = the current value of the call,
S = the current stock price,

K = the exercise price,

r = risk-free interest rate,

o = volatility of stock,

t = current time,

and T' = expiration date of the option.
It can also be shown using equation (1.4.6) that the value of the European put option, P,
is

(1.4.12) P =—Kr"¢(—dy) — Sp(—dy)

Evaluation of values of American call and put options is thoroughly covered in Hull (1989)

and Wilmott et al (1995).

In this thesis, we develop a model that can be used to model price changes using the double
gamma probability distribution. With the model, we forecast prices of different stocks and
the world’s major financial indices. Lastly, we compare the results of this model with

results obtained when a conventional log-normal distribution of stock prices is assumed.

1.5. Structure of the thesis

The rest of the thesis is structured as follows. Chapter 2 reviews major concepts in sto-
chastic processes that are cardinal to work related to this thesis. It provides a synopsis

of relevant literature in the area of stochastic processes as well as a highlight of some
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asset pricing models. Most of the work in this chapter can be found in Bhat (1984),
Medhi (1982), Ross (1999), Kao (1997), Joshi (2004) and other relevant research articles.
In Chapter 3, the research methodology used and the proposed model are presented. In

Chapter 4, results are presented, analysed and conclusions are made.



CHAPTER 2

Review of Some Stochastic Processes

In this chapter literature in areas relevant to the study is reviewed. In particular stochastic
processes and some stock price models are reviewed at length. Parameter estimation is also

reviewed.

2.1. Stochastic Processes

Many phenomena may be observed as random realisations over time. This is true in finance.
Hence the study of collections of random observations over time called stochastic processes
is very crucial. In this chapter we review some stochastic processes that have been used in

modeling finance dynamics.

DEFINITION 2.1.1. A stochastic process is a family of random variables {X(t) : ¢ > 0}

where t € T.

The values X (t) assumed by the process are called states while the set of all possible values
is called the state space. On the other hand the set of all possible values of the indexing
parameter is called the parameter space or index set T. The index t is often viewed as
a time parameter while the index set T is viewed as the set of all possible time points.
A typical example is the price of a stock in a financial market at time ¢, say S(t). The
states would be the values S(t) assumes at any time . When the index set T" is countable
the process {X(¢)} is said to be a discrete-time stochastic process while when the process
is defined at every instant over a finite or infinite interval, then {X(¢)} is said to be a

continuous-time stochastic process.

Every empirical data or stochastic process has a theoretical probability distribution behind
it. There are various techniques of modeling an unknown probability density through
parameter estimation. If the model turns out to be a good fit, the properties of the
stochastic process can be approximated by the known properties of the distribution. In

a similar way, if a real-life process, such as a stock price process, is observed to have the

14
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attributes of some stochastic process, then the behaviour of the real stock prices can be

easily modeled (cf Bhat (1984)).

In this thesis we focus on stock prices {S(t)} as our stochastic process. An analytical study
of historical stock data can be used to estimate its essential characteristics. Where it is
not possible to explicitly deduce the model of the stochastic behaviour analytically due to
its complexity, provided there is a starting point, the derivation of an estimate of a model
may be obtained through simulation techniques. This is achieved by mimicking the process
several times and averaging the sample characteristics so obtained. These techniques are

reviewed in greater detail in subsection (2.2.3).

In the next section, we briefly review some concepts that are central to the thesis.

2.1.1. Distribution of Stochastic Processes. For any stochastic process {X(t)}
it is customary to attempt to fit a probability distribution in order to understand the
characteristics of the process. Although a stochastic process {X(t) : ¢ € T} has a
corresponding probability distribution, in practice the specific information on the process
{X(t) : t € T} may not be easily described by a simple distribution (see Bhat (1984)).
The common approach is to define a joint distribution by studying the process at discrete

time points.

Let (ti,ta,--+ ,t,), where t; < ty < --- < t,, be a set of discrete time points. Then the

joint distribution for the process X (t) at these points is defined as

(2.1.1) PIX(t) < w1, X () < g, X(tn) < )

This distribution assumes its simplest form when the random variables are independent as it
is thus given as the product of individual marginal distributions. However, in most practical
situations the processes are more complex because of the existence of dependencies among
the random variables. Although it is desirable to have a joint distribution of the form
(2.1.1) some conditional probability distribution functions, called transition probabilities,
are defined based on some information of the stochastic process available for any specific

value of the time parameter.

Let ty and t; be two points in the index set T" such that ¢y < t;. Then the conditional

transitional function may be written as

(2.1.2) F(zo, 21 t0, 1) = PIX (1) < 21X (to) = 0]
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For a stochastic process with discrete parameter and state spaces, the transition

probabilities are defined as

(2.1.3) P = P(X, = j|Xm =i),n>m

ij
We shall revisit these in subsubsection (2.1.2.1) under some general properties.

In most real-life situations stochastic processes exhibit some form of dependence (Bhat
(1984) and Medhi (1982)). Hence stochastic processes may be broadly described according

to the nature of dependence relationship existing among members of the family.

DEFINITION 2.1.2. If for all ¢1,t5,- -+ [ t, € Tand t; <ty < -+ < t,, X(t2)—X(t1), X (t3)—
X(tg), -+, X(t,) — X(t,—1) are independent, then {X(¢) : t € T'} is said to be a process

with independent increments.

This implies that in a process with independent increments the magnitudes of state change
over non-overlapping intervals are mutually independent (Kao (1997)). A related property

is the stationary increment property.

DEFINITION 2.1.3. A stochastic process {X(t) : t € T'} is said to possess the stationary
increment property if the random variable X (t 4+ s) — X (¢) possesses the same probability

distribution for all £ and any s > 0.

This implies that the probability distribution of the magnitude of state change depends
only on the difference in the lengths of the time indices and is independent of the time
origin used for indexing parameter (Kao (1997) and Ross (1996)). Various authors have

assumed these properties for changes in stock prices.

2.1.2. Some Common Stochastic Processes. In this section we review some
common stochastic processes that are encountered in financial mathematics. We shall
further explore some important properties of such processes, most specifically we review
processes with discrete time and parameter spaces. The bulk of the content in this section

can be found in Ross (1996), Moran (1968), Kao (1997), Bhat (1984) and Medhi (1982).

2.1.2.1. Markov Chains. An asset such as a stock traded on the stock market either
increases, decreases or does not change in price each time the market opens and closes.

In this way the stock can, apart from being regarded as a physical system with three
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possible states, be viewed as a stochastic process. Stock prices are assumed to have a

special property which we define below.

DEFINITION 2.1.4. The stochastic process {X,,,n =0,1,2,---} is a discrete-time Markov

chain, if, for all j,4, 71, j2, ..oy Jno1 € N,

P[an - j‘anl - ianfZ = j17 ~7X0 = jnfl} = P[Xn = j|Xn71 - Z} - F)ij

For the continuous-time Markov chain, we adopt the definition given by Ross (1996).

DEFINITION 2.1.5. The stochastic process { X (¢),t > 0} is a continuous-time Markov chain

if for all s, t > 0 and nonnegative integers i, j, z(u), 0 < u < s,

PX(t+s)=7X(s)=i,Xu)=2(u),0<u<s] = PX(t+s)=jX(s)=1

The j values in the two definitions are referred to as states of the Markov chain. Thus if
X, has outcome j, the process is said to be at state j at the nth trial. The probability P,
called one-step transition probability, represents the probability that the process will make
a transition into state j given that it was previously in state . The transition probabilities
share similar properties as those of ordinary probabilities such that P; > 0, 7,5 > 0,

Z;‘)iopijzl,i:(Ll’ ...... , 00.

Markov chains are widely used in the modeling of problems in many application areas of
economic systems. The Markov chains are classified in accordance with some fundamental

properties of the states of the system (see subsubsection 2.1.2.1).

A Markov property may alternatively be interpreted as stating that the conditional
distribution of any future state X,,;; given the past states Xy, X1,---,---,X,_1 and the
present state X, is independent of the past states and depends only on the present state
(Ross (1996)). Stock prices are assumed to follow the Markov process because of the weak
form of market efficiency which states that the present price reflects all the information
of previous prices (Hull (1989)). This implies that only the present state is relevant for
predicting the future, hence if S; is the price of stock at time ¢, then

P[St—i-l = S|St = Sty .. .,Sl = Sl,SQ = 80] = P[St+l = SlSt = St].



2.1. STOCHASTIC PROCESSES 18

The transition probability F;; is referred to as a one-step transition probability while the

n-step transition probability, denoted P}, is defined as
P =PXoym=j| Xpn=14, n>0, i,j >0

This represents the probability that a process in state ¢ will be in state j after n additional
transitions. The one-step transition probability shall be written F;; instead of PZE In order
to compute n-step transition probabilities, the Chapman-Kolmogorov Equations defined

below are normally used
P =N"PRPE Wnom >0, Vi,
k=0

(cf. Ross (1996)).

The transition probabilities are usually presented in matrix form as

P11 P12 P13z Pii - DPin

P21 P22 P23 cdots pa -+ Doy
P - . . . . . . .

Pn1 Pn2 DPn3 T Pni °° DPnn

While the Chapman-Kolmogorov equations can be used in the computation of transition
probabilities, an illuminating approach is to undertake a classification of the states. The

next subsection highlights the various classes in which states of a Markov chain may fall.

Classification of States
The states of any Markov chain can be classified according to certain basic properties.

The classification is based on definitions given in this subsection.

DEFINITION 2.1.6. State j is said to be accessible from state ¢ if 5 can be reached from ¢
in a finite number of steps. If two states ¢ and j are accessible to each other, then they are

said to communicate. We denote this by i « j.

It can be shown that communication is an equivalence class (cf. Ross (1996)). In this way,
two states that communicate are said to be in the same class. Further a Markov chain is
said to be irreducible if there is only one class, in other words, if all states communicate.
Mathematically, the following properties of the communication relation hold (cf. Bhat

(1984), Ross (1996)):
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(i) 7 < i (Reflexivity)
(ii) if ¢ «» j, then j < ¢ (Symmetry)
(iii) if i «» j and j < k, then i < k (Transitivity).

While the equivalence classification of states takes into account the external relationship
between the states, another closely related classification takes into account the internal

nature of each state. This form of classification is considered through the following

definitions (cf. Bhat (1984), Ross (1996)).

We denote the probability that, starting from ¢, the process moves to state j for the first
time in the n — th step by fi;. More formally, let

(2.1.4) P=PX,=75,Xe #jk=12--- n—1]| Xy=1]

ij
and
(2.1.5) fii = Z o
n=1
With this notation, we give the following definitions.

DEFINITION 2.1.7. A state i is said to be recurrent if and only if, starting from state ¢

eventual return to state 7 is certain.

In terms of the probabilities given by (2.1.5) this implies that the state i is recurrent if
and only if f; = 1. However, it is possible that the process may not return to the state
it originally started from. This situation solicits another classification as given in the

following definition by Bhat (1984).

DEFINITION 2.1.8. A state is said to be transient if and only if, starting from state 4,
there is a positive probability that the process may not eventually return to state ¢, that

is, f“ < 1.

At times it is important to consider the number of moves required for the process to return
to a specified state. Accordingly, let u;; denote the expected number of transitions needed
to return to state ¢ assuming the process started from state i. When state ¢ is recurrent,
the mathematical expectation of the number of transitions required for the first return to

state ¢ in n steps is given by

o

Mz = aniin

=1
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The number of transitions required for the first return to the same state is called the
recurrence time and consequently p;; is called the mean recurrence time of state ¢. In view
of the definition of yu;;, a recurrent state can be further classified as null recurrent or positive

recurrent.

DEFINITION 2.1.9. A recurrent state ¢ is said to be null recurrent if and only if p; = oc.
A recurrent state is said to be positive recurrent if and only if u; < oo, that is, the mean

recurrence time is finite.

The states of a Markov chain can also be classified as transient or recurrent using transition

probabilities P/

. the probability that the process occupies state i after n steps given that it
was initially in state ¢. This is different from f7 which refers to the probability of the first
return to state ¢ in n steps. This classification is captured in the following proposition and

corollary found in Ross (1996) with some slight modification adapted from Bhat (1984).

ProrosITION 2.1.10. A state i is

(i) recurrent if and only if Y~ > P! = oo.
(ii) transient if and only if >~ P < 0o

COROLLARY 2.1.11. If ¢ is recurrent and i < j, then j is also recurrent.

The proofs of the proposition and the corollary can be found in Ross (1996). The corollary
shows that recurrence is a class property. Further, since all states in an equivalence class
communicate, they are all either recurrent or transient. This implies that the class of states

as a whole can therefore be considered as being either recurrent or transient.

The description of recurrent states given in proposition 2.1.10 provides another way to

characterise a recurrent state.

DEFINITION 2.1.12. Let d(i) denote the greatest common divisor of all integers n > 1 for
which P? > 0. The integer d() is called the period of state i. When the period is 1, the

state is called aperiodic.

Further classification of states can be discerned from the definitions that follow.

DEFINITION 2.1.13. A state ¢ is said to be an absorbing state if and only if P;; = 1.
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The definition implies that once the process enters state ¢ it remains in that state. Thus
when state i is absorbing fl = P; = 1 and hence p; = 1 which shows that i is positive
recurrent. In this way, a Markov chain may also be classified as absorbing if it has at least
one absorbing state, and if from every state it is possible to go to an absorbing state (not
necessarily in one step). On the other hand, in an absorbing Markov chain, a state which

is not absorbing is called transient.

In other types of Markov chains it is possible that all states belong to the same equivalence
class. Since communication is an equivalence relation, any two classes may either be disjoint
or the same. If no states outside of an equivalence class can be reached from any state

within the class, the class is said to be closed.

DEFINITION 2.1.14. A Markov chain is irreducible if its only closed class is the set of states

in its state space S.

Thus all the states of an irreducible Markov chain belong to one equivalence class.

There are many situations that are modeled as Markov chains in particular and stochastic
processes in general. We briefly review some examples of stochastic processes that possess

the Markov property and hence modeled as Markov chains.

2.1.2.2. Martingales. Although the origin of martingales lies in the history of games of
chance, they are powerful tools for analysing a variety of stochastic processes. We adopt

the definition given by Ross (1996) with a slight modification on notation.

DEFINITION 2.1.15. A stochastic process {S;,t > 1} is said to be a martingale process if
E“Stu < X0 fOI' all ¢ and E[St+1 | St, Stfl, s 752751] = St-

On the other hand if E[S;y1 | S| > S; for all ¢ it is called a submartingale while if
E[Sii1 | S < S; it is called supermartingale. A similar definition of martingales as a

continuous time process can be found in Neftci (1996).

The stochastic process {S;,t > 1} could be the price process of a security whose price
at any time ¢ is S;. The martingale property implies that the best forecast of unobserved
future values is the last observation on S; (Neftci (1996)). Thus at any one time the current
price fully represents all the information. In this sense, efficient markets are equated to

the existence of a martingale.
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The definition also implies that future movements in martingales are impossible to forecast
(Neftci (1996)). If S; is a martingale and consider the forecast change in S; over a time

interval length A > 0, then
E[StJrA - St] - E[St+A] - E[St]

Since S; is a martingale and E[S;] is a forecast of the martingale that is already revealed,

then
E[St+A - St] = O

Thus a fundamental characteristic of martingales is the impossibility to forecast their
future movements. However, stock prices are not completely unpredictable and hence
are generally not martingales (Neftci (1996)). Although most financial assets are not
martingales, they can be converted into martingales. The advantage of this is that
properties of martingales can be used to analyse financial data. For instance, a probability
density P’ can be identified such that a financial asset such as stock discounted by the

risk-free rate r become martingales. Then an equality such as

EP/ [GirASH_A] == St

for all A > 0 can be used in pricing derivative securities. Methods for converting other

processes into martingales can be found in Neftci (1996).

2.1.2.3. Birth and Death Processes. The birth-death process is a special case of
continuous-time Markov process where the states represent the current size of a population
and where the transitions are limited to states ‘increase’ and ‘decrease’. Although death
and birth processes are more relevant in problems related to populations, it is also used in
economics. Birth and death process models are used in inventory systems if replenishment
of stock is accompanied only by placing orders. In such a system, if demands for items
occur in a Poisson process, then the inventory in between replenishments can be modeled

as a pure death process (Bhat (1984)).

DEFINITION 2.1.16. A birth and death process {X(t),t > 0} is a continuous-time discrete

space (with state-space N) Markov process such that

(a) PIX(t+h)=n+1X{t)]=n
(b) PIX(t+h)=n—-1X({)]=n

Anh 4+ 0o(h), for n >0
tnh + o(h), forn >1
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(c) PIX(t+h)=n|Xt)]=n=1— (N, + pn)h + o(h), for n > 0,

f(h)

’ =0.

where any function f(-) is said to be o(h) if limy,_. ¢

It can be seen from the definition that three types of transitions are possible: one birth,
or one death, or no birth nor death. In other words, three states can be distinguished and
may be interpreted as states ‘increase’; ‘decrease’ or ‘no change’. The state of the process
is usually interpreted as the size of the population (Ross (1996) and Kao (1997)). When
the state increases by 1, it is said that a birth has occurred while when it decreases by 1
it is said that a death has occurred. In other words, when a birth occurs, the process goes
from state n to n + 1. When a death occurs, the process goes from state n to state n — 1.

When neither death nor birth occurs, the process remains in the same state n.

The birth and death process is specified by birth rates {A,}n=01..0c and death rates
{,un}nzlnoo}. If A\, = 0 for all n, the process is said to be a pure death process while

if u, = 0 for all n the process is said to be a pure birth process.

An example of a pure birth is a Yule process. This is the case where in a population each
member acts independently and gives birth at an exponential rate . If no single member
of the population ever dies, then, if X (¢) represents the population at time ¢, the process

{X(t),t > 0} is a pure birth process with A\, = n\.

A detailed treatment of birth and death processes can be found in Ross (1996), Kao (1997),
Medhi (1982) and Bhat (1984).

2.1.2.4. Counting Processes. In the study of a number of phenomena, it may be useful
to consider the number of occurrences during a period of time or space. For instance, one
may be interested in the number of times the stock price has gone up or down in any given
period. This is used in option pricing using the Binomial option pricing model reviewed in
subsubsection 1.4.5. Such type of stochastic process is called a counting process. We adopt

the definition given in Ross (1996).

DEFINITION 2.1.17. A stochastic process {N(t),t > 0} is said to be a counting process if
N(t) represents the total number of events that have occurred up to time t.
In view of the definition, a counting process N (t) must satisfy the following:

(i) N(t) > 0.
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(ii) N(t) is integer valued.
(iii) If s < t, then N(s) < N(t).
(iv) For s < t, N(t) — N(s) equals the number of events that have occurred in the interval

(s,t].

Counting processes that possess independent increments and stationary increments are a
special type of a well known stochastic process called the Poisson process. Using the four
requirements that a counting process must satisfy as outlined above, the following theorem

is cited.

THEOREM 2.1.18. Let {N(t),t > 0} be a counting process with independent increments
such that N(0) = 0. Then there exists a constant A > 0 such that the transition probability

distribution of the stochastic process {N(t),t > 0} has a Poisson distribution given by

AL)"
P[N(t+s)—N(s):n]:6_)‘t¥, n=0,1,2---,
n.

where s, t > 0.

The proof of this theorem can be found in Medhi (1982), Bhat (1984), Kao (1997) and
Ross (1996).

The expected number of events, called the rate of the process, that have occurred up to
time ¢t can be found as E[N(t)] = At. We use this theorem and associated results in our

proposed model in chapter 3.

In the next three subsubsections, we review two stochastic processes in continuous time
which are widely used in finance and other fields. These fall broadly under the notion of

Brownian motion.

2.1.2.5. Geometric Brownian Motion.

DEFINITION 2.1.19. Suppose P(t) is the price of a security at a time ¢ from the present.
The set of prices {P(t)}, with 0 <t < o0, is said to follow a Geometric Brownian motion

with drift parameter ;1 and volatility parameter o if for all £ > 0 and s > 0, the random

P(t+s) P(t+s)
P(t) P(t)

random variable with mean ps and variance so?.

variable is independent of all prices up to time t and log is a normal

The geometric brownian motion implies that it is only the present price, not past history of

prices, that affects the movements of future prices. In addition, probabilities of the ratio of
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the price P(t) at a future time ¢ to the present price P(ty) will not depend on the present
price P(ty). A more thorough coverage of this concept is given in Ross (1996).

2.1.2.6. Brownian Motion. In this section the basic definition of the Brownian motion is
given and is related to stock prices. We also briefly trace its origins and note its similarities
to the geometric Brownian motion. A thorough introduction to the concept of Brownian
motion can be found in Ross (1999), Willmott et al (1995), Joshi (1989), Neftci (1996) and
Kao (1997).

DEFINITION 2.1.20. Let {P(t)} be a set of prices for 0 < ¢ < co. The set of prices {P(t)}
is said to follow a Brownian motion with drift parameter p and variance parameter o2 if
for all ¢t > 0 and s > 0, the random variable P(t 4+ s) — P(t) is independent of all prices

up to time ¢ and is a normal random variable with mean pus and variance so?.

In 1827 the Brownian motion was used to describe the unusual motion displayed by a
small article totally immersed in a liquid or gas. Later in 1925, Albert Einstein showed
mathematically that Brownian Motion could be explained by assuming that the immersed
particle was continually being bombarded by the smaller particles surrounding it. It was,
however, independently introduced in 1900 by Louis Bachelier to model price movements

of stocks and commodities (Ross (1996)).

Stock price movements seem to display behaviour similar to Brownian motion. The
immersed particle may be viewed as the stock price and the smaller particles as the trades
that move the stock price. Each trade moves the price up or down and each trade is

independent from other trades.

It is worthwhile noting that the geometric Brownian motion and the Brownian motion
share the property that the price at a future date depends only on the present price. The
only difference between the two concepts is that in the Brownian motion it is the difference
in prices that has a normal distribution whereas in the geometric Brownian motion it is

the logarithm of their ratio that has a normal distribution.

2.1.2.7. The Wiener Process. The Wiener process is similar to the Brownian motion
process with the exception that the Wiener process is appropriate for continuous stochastic

processes. We paraphrase the definition found in Medhi (1982).

DEFINITION 2.1.21. A stochastic process {W (t),t > 0} is said to be a Wiener process if it

satisfies the following conditions:
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(a) {W(t),t > 0} has stationary independent increments.
(b) Every increment W (t) — W (s) is normally distributed with mean (¢t — s) and variance
o(t — s).

The first part of the definition implies that the Wiener process is a Markov process with
independent increments while the second part implies that a Wiener process is Gaussian.
A Wiener process in which W(0) = 0, p = 0 and o = 1 is called a standard Wiener process.
The Wiener process has many applications. It is used to model the movement of particles
immersed in a liquid or gas in quantum mechanics. In finance, the Wiener process is used
to model price fluctuations in stock and commodity markets. A detailed treatment of the

Wiener process can be found in Bhat (1984), Neftci (1986) and Willmott (1995).

As has been mentioned in section (2.1.1), to understand the characteristics of a stochas-
tic process it is desirable to fit a probability distribution. The characteristics of such
probability distributions need to be estimated. One such procedure for estimation is the

method of maximum likelihood and this is the object of discussion in the next section.

2.2. Review of Parameter Estimation

The study of properties of stochastic processes is very crucial in finance. Historical data is
usually used to estimate the essential characteristics of stochastic processes (see subsection
2.1.1). In some cases, a probability distribution may be fitted. The characterstics or
parameters of such probability distributions need to be estimated. One such procedure
for estimation is maximum likelihood estimation. In this chapter, we review maximum

likelihood estimation and related concepts.

2.2.1. Maximum Likelihood Estimation. Given a data set taken from any
population, it is customary to inquire about the characteristics of the population from
which it was taken. One way of making such inferences is to assume some kind of
probabilistic model that would describe the population. But since the parameters of
such a model are not known, statistical inferences of the population would not be easy
without employing estimation. One single most popular method of estimation is Maximum

Likelihood Estimation (MLE).

DEFINITION 2.2.1. Let {Xi, X5, X3, -+, X,,} be a set of random variables with a joint

density function f(xq1,x9, - ,2,). Given observed values X; = x; for i = 1,2,--- ,n, the
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likelihood of a function of xq, xo, - , x, is defined as

lik(9) = f(z1, @2, 2, ]0).

The likelihood function gives the probability of observing the given data as a function
of the parameter. The aim of maximum likelihood estimation is to find the parameter
value(s) that makes the observed data most likely. Instead of maximising lik(?) it is easier
to maximise its logarithm () = Xlog|f(x;]|?)] since the logarithm of a product of variables
simplifies into the sum of logarithm of the individual variables. Then the maximum

likelihood estimators of ¥,,,--- 1, are solutions to the simultaneous equations given

a(l
by ai9.>

We briefly review selected examples of maximum likelihood estimators for some common

=0, where 2 =1,2,--- ,n.

probability distributions. Among the distributions, we highlight the gamma distribution

which is central to this study.

ExAMPLE 2.2.2. Normal Distribution
Under the Normal distribution, there are two parameters that would be estimated. These
are mean j and standard deviation o. Since the natural logarithm of the likelihood function
is

n 1 < 9
l(p,0) = —nlno — 511127? —— Y (z; —p)7,

202 4
=1

then using partial differentiation it can be shown that the maximum likelihood estimators

1
for 4 and o are p =7 and o = {/ —X(z; — T)? respectively.
n

ExaMPLE 2.2.3. Poisson Distribution

Suppose a random variable follows a Poisson distribution with parameter A, then

Axe—A
P(X =x) = U
If x1,29, -+ ,x, are independently and identically distributed and Poisson, then the

logarithm of the corresponding likelihood function is

(A = ln/\zn:xi —nA— zn:hlxi!.
i=1 i=1

a(l
Upon differentiating partially and solving the equation Q = 0, the maximum likelihood

oA

estimator obtained is X = 7.
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ExXAMPLE 2.2.4. Gamma Distribution
Let x1,29,--- ,x, be a random sample taken from a gamma distribution with parameters

a and [, then its density function is given by

f (] B) = ﬁﬁ%a—le—ﬂz,

where 0 < x < oco. The parameter « is called a shape parameter for the gamma function

and (3 is called a scale parameter.

Although the logarithm of an independently and identically distributed sample that follows

the gamma distribution is
l(er, B) = nalnf + (a — 1) Z Inz; — ﬂz x; — ninlo,
i=1 i=1

it is impossible to obtain maximum likelihood estimators using the procedure used in the
above examples. Instead numerical methods may be used. However, using the method of

moments, the maximum likelihood estimators are found to be

2
a=— and (= —
T

2

where s* is sample variance while 7 is sample mean.

In our model we use these two maximum likelihood estimators. A more rigorous treatment
of maximum likelihood estimation is provided in Myung (2003), Hogg et al (1978) and Rice
(1988).

ExAMPLE 2.2.5. Double Gamma Distribution The general form of the double gamma

distribution has the following probability density function:

1 (Ir;ul)(a—ne—(lxgu\)

2 AT (a)

where p and [ are the positive location and scale parameters respectively. The distribution

flx) =

is also referred to as the reflected gamma distribution. Our proposed model is based on
the double gamma distribution and its model parameters shall be estimated using the

maximum likelihood estimators given above.

When = 0 and # = 1 then the distribution is referred to as the standard form of the
gamma distribution given by the following probability density function

1 ’x‘a—le—k{:\

H@) =3 T(a)
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where « is a positive number that is the shape parameter and I' is the standard gamma

function.

The following are graphs of the double gamma probability density function for different

values of the shape parameter.

DGAPDF FOR X =-2 0,01 2 DEAPDF FOR X =-20.00 2

DGAPDF FOR X =-201013 DEAPDF FOR X =-20.01 32

F1GURE 2.1. Graphs of the double gamma probability density function with

shape parameters 1, 2, 5 and 0.5

From left to right, the top row exhibits the graphs of the double gamma probability density
function with shape parameters 1 and 2 respectively while the bottom row displays graphs

corresponding to shape parameters 5 and 0.5 respectively.

In addition to maximum likelihood estimation, other estimation methods may be used to
obtain estimators such as the sample mean. However, some estimators may not be very
good estimators. For the sample mean, we appeal to the Law of Large Numbers. This is

reviewed in the next section.

2.2.2. The Law of Large Numbers. The use of repeated experiments to model

the behaviour of random variables is a standard practice in applied science. After a large
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number of experiments, it is possible to estimate, for instance, the relative frequency of a
random variable. As most commonly computed statistics, such as averages, are expressed
in terms of sums it is desirable to consider taking limits. We take advantage of two laws,
the Weak Law of Large Numbers (WWLN) and the Strong Law of Large Numbers (SLLW),
that we use in our thesis and we state them here. We adopt versions found in Ross (1984)

but we modify them slightly.

THEOREM 2.2.6. The Strong Law of Large Numbers
Let X1, X5, -+ be a sequence of independent and identically distributed random variables,
each having a finite mean p = E[X;]. Then,

P(limyn:p)zl

n—oo

The Strong Law of Large Numbers asserts that the sample mean X converges to the
population mean p with probability 1. This justifies the use of X as an estimator for p

provided the sample is large.

THEOREM 2.2.7. The Weak Law of Large Numbers
Let X1, Xo, -+ be a sequence of independent and identically distributed random variables,
each having a finite mean pu = E[X;], Then, for any e > 0,

lim P (‘Yn —,u‘ < 5) =1
In both cases, X, = (X; + --- + X,,)/n. The proof of the Law of Large Numbers can
be found in Rice (1988) while that of the Weak Law of Large Numbers is found in Ross
(1984).

It is worth pointing out that these laws mean the same thing. The only difference is in
the manner in which the sample mean converges to the population mean. The weak law
states that as the sample size grows larger, the difference between the sample mean and the
population mean will approach zero. The strong law states that as the sample size grows
larger, the probability that the sample mean and the population mean will be exactly equal
approaches 1.0. In essence, both laws imply that the sample mean X is increasingly likely
to be close to the population mean ;1 as n — oo. This justifies the use of the sample mean

X as an estimator for population mean .
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While maximum likelihood estimation is used to estimate the basic statistics of a system,
it also helpful to model the system through repeated experimentation. This is the focus of

the next section.

2.2.3. Simulation. Simulation is one of the most widely used statistical approaches
used to model the operation of a real system. It involves learning about a real system using
a model that represents the real system. The model comprises mathematical expressions
and logical relationships that are used to evaluate outputs for given values of inputs. The

values obtained using the model are then compared with the real system or situation.

Basically any simulation model has two inputs called controllable inputs and probabilistic
inputs. The values for the controllable inputs are selected by the analyst while the values
for the probabilistic inputs are randomly generated by a computer. The model uses values
of the controllable inputs and values of the probabilistic inputs to generate a value or
values of the output. Data obtained from results of a series of similar experiments using
a variety of values of the controllable inputs is analysed and reviewed. The analysis and
review enables the analyst to make adjustments to the controllable inputs so that a desired
result of the real system can be obtained. This procedure of modeling the real situation

through repeated experimentation under the same conditions is known as simulation.

In this thesis, our random variable is the stock price S; which we simulate as a Gamma
random variable. In Chapter 3 we explain in greater detail how we carried out the
simulation to obtain our results. Explicit examples of simulations of normal, exponential,

gamma, binomial, geometric and Poisson random variables are given in Ross (1984).

2.3. Stock Price Models

The determination of future values of assets such as stocks is becoming increasingly relevant
to investors as well as consumers and producers. Price forecasting is used for developing
trading strategies and negotiation skills to maximise benefit. In finance, the underlying
asset’s price is used in the evaluation of risk and pricing of derivative assets (see section

1.4).

In this section we review some of the work that has been previously done in asset pricing
in general and stock pricing in particular. This is intended to link work in this thesis and

previous work done by other researchers.
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There are different types of models that have been suggested for modeling financial data
in general and stock prices in particular. These models can be classified into two basic
categories: discrete time models and continuous time models. Most financial time series
are observable at fixed discrete time points. For instance, indices and stocks trading on the
world’s financial markets consist of daily opening and closing prices. The discrete nature
of such types of financial data is one of the motivations behind discrete time models. Thus
the models that we review in this section belong to either one of the two categories and

where necessary we specify the category that a particular model belongs to.

2.3.1. The Bachelier Model and Samuelson Model. Efforts to develop a
mathematical model for stock price behaviour can be traced back to two centuries ago.
In 1827, Robert Brown, while studying the random motion of a pollen on the surface of
water, introduced the notion of Brownian motion. Bachelier seems to be the first to develop
a mathematical theory of Brownian motion and used it to value stock options on the Paris
stock market (Straja (2006)). The price S; of stock at any time ¢ in Bachelier’s additive

model takes the form, in modern technology,
(231) St:SO+/,Lt+UBt,tZO

where ) is the price at time ¢t = 0, 1 and o represent drift and volatility respectively while
B, is a standard Brownian process (Shepp (2000)). In differential form equation 2.3.1 may

be written as

(2.3.2) dS; = pdt + od B,

The Bachelier model is premised on the assumption that the logarithm of price relatives
L(t,T) = In[S(t + T) — S(t)] has the following four properties: random, statistically
independent, identically distributed and that their marginal distribution is Gaussian with
mean zero (see Mandelbrot (1963) and Fama (1970)). Due to advances in the theory of
speculation Bachelier’s four hypotheses have undergone various amendments as shown by
Mandelbrot (1963). Fama (1963) also concluded that a better description of distributions
of daily returns on common stocks is given by non-normal stable distributions other than

the normal distribution.

In his work, Bachelier used the model to value a European option. One major weakness of

his model is that prices can be negative. However, since then the theory has been modified
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by, among others, Samuelson (1965). Samuelson (1965) developed a similar model but in
exponential form by replacing Brownian motion with the geometric Brownian motion and

gave the pathwise solution

0.2

oWy —— )t
S, = Soe +(p 5 )
of the stochastic differential equation
(233) dSt = Studt + StUth

where p and o are as specified in Equation (2.3.1) while W, is a Wiener process and t > 0.
The pathwise solution has an added advantage that the price S; remains positive for all
values of ¢. This model is widely used today, in particular in option pricing and hedging

(Follmer and Schweizer (1993)).

In more recent times, there has been a diversification of methods for modeling stock price
behaviour though a complete divorce from the Brownian motion concept is impossible.
In a recent paper, Rydberg and Shephard (1998) use the compound Poisson process to
model asset prices in addition to similar work independently done by Rogers and Zane
(1998). Their model is based on the assumption that the non-stationary and non-linear

price process follows
N(t)
(2.3.4) Si=S0+> Z,
t=1

t > 0 and {N(t)}+>0 is a counting process that counts the number of transactions up to
time ¢ while Z; is the price process associated with the ¢ — th trade (see Rydberg and
Shephard (1998)). Norvaisa (2000) uses real analysis to model stock prices. His work is
found in Norvaisa (2000).

2.3.2. The Binomial Model. The Binomial Model for stock prices can be described
as a tree. At any deterministic time points, the nodes split into two. Thus at the end of
any time period the price can be in any two possible states, “up” or “down”. The price of
stock starts with a value S but moves up to uS with probability p and down to dS with
probability (1 — p) over a small interval of length A¢. Then at the end of nAt periods the

price of stock will be

(2.3.5) S, =ud"78S.
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At time n there are n possible values that the stock price can take and, in particular,

) ) n! ) )
2.3.6 P[S, =W/ d" 78] = —————p (1 —p)" 7, j=0,1,2,--- ,n,
(2.3.6) [ ] T (1—p)
where: u = %l, d = e*"@, p = %, r = rate of interest during each period and o is

stock volatility (see Rydberg (2000), Hull (1989) and Wilmott etal (1995)).

2.3.3. Lognormal Model for Stock Prices. The lognormal model for stock prices
is widely covered in the literature, especially in standard financial mathematics texts. The
bulk of the work in this section can be found in Joshi (2004) and Hull (1989). However,
Ito’s Lemma is adopted from Neftci (1996) and is restated below.

LEMMA 2.3.1. Let G(Sy,t) be a twice-differentiable function of t and of the random process
Sy dS; = adt + oy dWy, t > 0 with well behaved drift and diffusion parameters, a; and oy.
Then

oG 9G . 10°G
2.3, G = 2545, + gt + 295 s
(2:37) G =550+ Hrdtt 35527

A derivation of Ito’s Lemma can be found in Appendix 4A in Hull (1989).

[to’s Lemma is used to derive the process followed by G = InS; to obtain

2

(2.3.8) dG = (ju — %)dt + odW.

2
o
As p and o are constants, then G follows a Wiener process with constant drift rate u — 5

and constant variance rate o2. Thus

2
(2.3.9) InSy — InS,~[(1 — %)(T —t),0vT —1]
where St is the stock price at time 7', S; is the stock price at current time ¢ while ¢(p, k)

denotes a normal distribution with mean p and standard deviation x for 7" > t.

Using properties of the normal distribution, it follows that

2

(2.3.10) InSy~o[nS, + (1 — %)(T —1),0VT — 1

This shows that InS7 has a lognormal distribution. The uncertainty about the logarithm

of the stock price is

(2.3.11) Vvar[InSy]=T —t.
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Using equation ( 2.3.10) and properties of the lognormal distribution the expected value

of St is given as
(2.3.12) E(St) = ST,

(see Hull (1989)).

Equation ( 2.3.12) can, therefore, be used to estimate the price of stock at time 7. Although
this is the case, empirical studies show that the distribution of stock returns is far from
normal and that the logarithm of stock prices tend to have a distribution with log-linear
tails (Bibby and Sorensen (1997). Further it is shown that after a sufficiently long time
the logarithm of the stock price is approximately hyperbolically distributed (see Bibby and
Sorensen (1997)). A hyperbolic diffusion model for stock prices is reviewed in the next

subsection.

2.3.4. Hyperbolic Diffusion Model for Stock Prices. There is empirical evidence
that stock returns are better modelled by distributions other than the normal distribution.
Eberlein and Keller (1995) use a class of hyperbolic distributions to fit empirical returns
with high accuracy. Hyperbolic distributions differ from normal distributions in that
the log-density of the former is a hyperbola while the latter is a parabola. Hyperbolic
distributions have been used in various scientific areas such as modelling of turbulence and
sand deposits. One class of hyperbolic distributions is given by the hyperbolic density

function

/a? — 32 - -
hun(x) = e~V o (@—p)?+p(z—p)
up() 200Ky (0\/a? — [3?)

where K denotes the modified Bessel function of the third kind with index 1, o and

(with @ > 0 and 0 <| 8 |< «) determine the shape of the distribution while o and p are

scale and location parameters respectively.

Eberlein and Keller (1995) analyse the prices of ten of the stocks that compose the
German stock index , DAX. Maximum likelihood estimation is performed to estimate
model parameters and after carrying out significant tests it is concluded that daily stock

returns are best modelled by hyperbolic distributions.

Bibby and Sorensen (1997) use hyperbolic distributions and propose a diffusion process

model for the logarithm of stock price. Due to empirical evidence that the logarithm of the
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stock price is a process with increments that are not independent, a model for the stock

price S; of the following form is suggested:
(2.3.13) Sy = et
where
t
X; = Xo +/ v(Xs)dWy
0

where X, is the state variable and «t is the constant drift rate. On application of Ito’s

Lemma, the following is obtained
1
(2.3.14) dS; = S{[r + 502(logSt — kt)]dt + v(logS; — Kt)dW,}.

This implies that the asset price S; follows geometric Brownian motion provided
v(x) is constant. The parameters of the distribution may be calculated numerically.
Predota (2006), however, suggests the use of asymptotic formulas for maximum-likelihood
estimators of hyperbolic density functions while Bibby and Sorensen (1995) use martingale
estimation functions. Further methods for estimating parameters can be found in Kessler

(2000) and Bibby and Sorensen (2001).

Bibby and Sorensen (1997) obtained several statistical properties of the process S; . For
instance, they showed that the marginal distribution of logS; is hyperbolic and hence logS;
is approximately hyperbolically distributed after a sufficiently long time period. Further,
the distribution of increments over short intervals has thick tails while an increment over
a long interval follows a distribution that is close to being hyperbolic. They also provided

the theory in applying the hyperbolic diffusion model to option pricing.

2.3.5. Time Series Models. In most financial applications, the prediction of future
values of assets is very crucial. Scientific forecasting, based on sound and statistical
methods, is used to provide a likely or expected value for some outcome. One such method
is regression. Regression is a technique for exploring relationships between variables of any
discrete time series data such as stock data. There are many regression models in finance
that attempt to establish relationships between variables with a view to forecast future
values. For instance, linear regression explores linear relationships by fitting straight lines

through data using the method of least squares. It attempts to fit a model of the form

(2.3.15) U = a+ bxy.
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However, stock price data do not exhibit linear relationships to warrant the use of simple
linear regression models of the form 2.3.15. More rigorous time series analysis methods are

often sought. These are reviewed in the following subsections.

2.3.5.1. Autoregressive Model of order p. Autoregressions are regression models that
relate a variable to its past values. If {Y;} is a time series, then a general autoregressive

model of order p, denoted AR(p), is a model of the form

P
(2.3.16) Y=Y oYiite,

i=1
where @1, 9, -+, are the parameters of the model and ¢; is an error term with zero

mean and constant variance o2. An error term with zero mean and constant variance is
referred to as a white noise error term. In the case where p = 1, the model relates the
variable Y; to Y;_; and it is called first order autoregressive model, abbreviated by AR(1)
and given by

(2317) Y;g = @1}/;,1 + E¢.

The autoregressive model represents a variable as a linear function of its past values. The
AR(1) model is restrictive since it assumes that Y; depends only on Y, ;. However, in

reality Y; might depend on other variables, hence the need for an AR(p) model.

Although an autoregressive model of order p may be used in modeling financial time series,
one major challenge is the choice of the value of p and related parameters. In practice,
useful tools are the autocorrelation function (ACF) and partial autocorrelation function

(PACF). A detailed treatment of these may be found in Anderson et al and Lutkepohl.

An improvement of the AR(p) model includes a moving average component. This model

is the subject of the next subsection.

2.3.5.2. Autoregressive Moving-Average (ARMA) Model. One model that has proven to
be extremely useful in the analysis of discrete-time random processes is the Auto-regressive
Moving-Average (ARMA) model. The ARMA model has two parts, an autoregressive (AR)
part and a moving average (MA) part. The model is usually referred to as the ARMA(p,q)
model where p is the order of the autoregressive part and ¢ is the order of the moving
average part. In a moving average process, a variable is expressed in terms of current and

previous white noise errors. Consequently an MA(q) is a moving average model of order ¢
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and is written as
q
(2.3.18) Yi=e+ Y o
i=1

Combining the AR(p) and the MA(q) parts leads to the ARMA(p,q) model of the form
(2319) Y; =&+ 2€:1¢iyvt,i + 2?:1(91'5,5,1'.

The error terms ¢; are assumed to be independently and identically distributed random

variables from a normal distribution with zero mean and variance o2, that is, &, ~ N (0, 0?).

2.3.5.3. Auto-Regressive Conditional Heteroscedasticity (ARCH) Model. Mandelbrot
(1963) observed that large price changes tend to be followed by other large changes, while
small changes are usually followed by other small changes. This phenomenon, known as
volatility clustering, is best modeled by a model developed by Robert Engle (2001) called
Auto-Regressive Conditional Heteroscedasticity (ARCH) Model.

As the name suggests, the ARCH model has two properties: autoregression and conditional
heteroskedasticity. Autoregression implies that it uses previous estimates of volatility to
calculate subsequent (future) values while conditional heteroskedasticity implies that the

volatility varies with time. The simplest ARCH model is the ARCH(1) model given by
(2.3.20) }/t:Utgt,Uf :w+oéy152_1’t: 1,2,---,T,

where €}s are independent identically distributed and ; ~ N(0,1). A general ARCH(p)

model is given by
p
(2.3.21) F=w+ > iyl
i=1

(see Rydberg (2000) and Engle (2001)).

ARCH models were later generalised by Bollerslev (1986) and have become to be known
as generalised ARCH (GARCH) models (see Bollerslev (1986)). The GARCH type of
models are widely used to model market returns. Other autoregressive models include
AutoRegressive Integrated Moving Average (ARIMA) models popularised by Box and
Jenkins (1976) (see Bhat (1984)). ARIMA models have been applied to forecast the
prices of electricity in Spanish and Californian markets (see Contreras et al (2003)). Other
ARCH-type models that have been developed in the recent past include the Exponential
GARCH, EGARCH, model and Heterogeneous ARCH, HARCH, model mentioned in
Rydberg (2000).
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2.3.6. General Random Walk Models and Other Models. Due to the efficient
market hypothesis asset prices are generally assumed to move randomly (Wilmott etal
(1995)). This implies that the past historical information is fully reflected in the present
price and that markets respond immediately to any new information about an asset. Thus

the price of an asset is effectively affected by the arrival of new information.

Suppose the price of an asset at any time ¢ is S. Consider during a small time interval
dt in which the asset price changes from S to S + dS. Wilmott etal (1995) models the
corresponding return on the asset, %, by decomposing the return into two components.
The first component is a measure of the average rate of growth, pu, of the asset price known
as drift. Over the time interval dt, this makes a contribution pdt to the return % The

drift is often a constant in simple models but in more complicated models, such as for

exchange rates, ;1 can be a function of S and t.

The second component measures the standard deviation of the returns. This models the
random change in the asset price in response to external effects such as unexpected news
and is represented by a random sample taken from a normal distribution with mean zero.
The contribution of this to g is odX, where o is a number called volatility and the
quantity dX is the sample from a normal distribution. Putting these components together

leads to an equation similar to equation 2.3.3 called stochastic differential equation

(2.3.22) % = 0dX + pdt.

The stochastic differential equation is a particular example of a random walk model that
is often used to describe the price process of many assets. When the volatility is zero,

equation 2.3.22 reduces to an ordinary differential equation

(2.3.23) % = pdt

which is solved to give an exponential growth in the value of the asset
(2.3.24) S = Spert=to),

where Sj is the value of the asset at ¢ = t3. This implies that if ¢ = 0 the future price
of an asset can be predicted with certainty. However, in reality volatility is never zero.
Consequently the component 0dX is certainly a feature of the asset price process. The

term dX is known as a Wiener process and has the following properties: dX is a random
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variable drawn from a normal distribution; the mean of d.X is zero and the variance of d.X

is dt.

There are other versions of the random walk model. For example, if P, is the price of stock
at time ¢ and let its residual be €;, Granger and Morgenstern (1970) propose a random

walk model written, in its simplest form, as
(2.3.25) P,=P_,+¢

where Ele;)] = 0, covle, ;5] = 0, for all s # 0. The expression covle;, ;5] = 0 implies
that the residuals whose mean is zero are uncorrelated with all previous residuals. In this
form, the implications of the random walk model is that the best predictor of the following
day’s price is the current price. More generally the best predictor of any future price is
the most recently available price. It is shown formally through reapplication of equation
(2.3.25) as follows. Using equation (2.3.25), it follows that
Piyn =P+ 64
implies that
Piyo = Pii1+ €42, Pz = Pra + €43
and finally
Prin = B+ X €45
(see Granger and Morgenstern (1970)).

Since Ele;] = 0 and covles, €] = 0, then E[¥7_ €:1;] = 0 and the result follows.

The model given by equation 2.3.22 fits real time data series very well especially equities
and indices (Wilmott etal (1995)). Although real data exhibit higher probability of large
rises or falls than the model predicts, the random walk model turns out to be the basis
for more sophisticated models such as the Mean Reverting Process and the Ornstein-
Uhlenbeck Process (see Neftci (1996)). Blasco et al (1997), in their study of the random
walk hypothesis in the Spanish stock market, conclude that while stock returns are not
independent and identically distributed, stock prices appeared to follow the random walk.

This view is also shared by many financial economists as well as statisticians (Malkiel

(2003)).

While there is very strong empirical evidence in favour of the random walk model, it is

not an absolutely perfect fit for all price series or over all time intervals. It appears valid



2.3. STOCK PRICE MODELS 41

for markets that have the characteristic of the stock market (Granger and Morgenstern
(1970)). For instance, in previous studies cotton prices did not appear to be following the
random walk hypothesis (Mandelbrot (1963)). Lo and MacKinlay (1988) reject the random
walk model for weekly returns for the entire sample period (1962 — 1982). They provide
evidence that stock prices do not follow random walks by using a simple specification test
based on variance estimators. Darrat and Zhong (2000) tested the random walk hypothesis
on daily stock price data of China’s two official stock markets (Shanghai and Shenzhen).
The results obtained did not support the random walk hypothesis. Another study that
does not support the random walk hypothesis was carried out by Niederhoffer (1965).

There are various other models that have been proposed which build on the independent
increments of returns. For instance, Praetz (1972) presents a scaled ¢-distribution model
which appears to be a good fit to weekly share price indices from the Sydney Stock
Exchange for the period 1958 — 1966 (see Rydberg (2000)).

Another model of the discrete time type that has been proposed in recent times is the
Autoregressive Conditional Duration (ACD) model developed by Engle and Russell (see
Rydberg (2000) and Engle and Russell (1998)). In this model, the arrival of transactions

are described as a counting process and the duration between events follows a process of

the type
(2326) Y; =—w+ar,_1+ 6}/15,1
fora>0,06>0,w>0forallii=1,2---,n where z; denotes the duration between

events at time ¢;,_; and ¢;. A thorough coverage of other models can be found in Rydberg

(2000)).



CHAPTER 3

The Double Gamma Model, Data and Methodology

The Double Gamma model proposed in this thesis studies the distribution of differences
between closing stock prices on successive days. Until recently, stock price differences have
been modeled as being either normal or log-normal (Brada et al (1965) and Mandelbrot
(1963)). However, normal quantile-quantile (Q) — @) plots for indices and stocks studied

reveal the contrary. This is shown in Appendix A.

3.1. The Data

The raw data for analysis consists of 25,786 daily observations of three major indices and
36,377 values of stock prices for six firms. The data comprises daily closing stock values
for major firms trading on the London Stock Exchange, New York Stock Exchange and
Tokyo Stock Exchange. Indices consist of Dow Jones Industrial Average, Japan’s Nikkei
225 and Financial Times 100 Index which are reviewed in the following subsection. Table

3.1 below summarises the nature of the data used in this thesis.

TABLE 3.1. Summary of sampled data

Index/Stock Sample Period Sample Size | Country/Region
FTSE 02/04/1984 - 19/01/2007 5,761 UK. (Europe)
Nikkei 225 04/01/1984 - 19/01/2007 | 5,672 Japan (Asia)
S&P 500 03/01/1950 - 19/01/2007 | 14,353 USA (America)
Sony Corporation | 06/04/1983 - 19/01/2007 5,997 Japan (Asia)
Toyota Corporation | 13/04/1993 - 19/01/2007 3,464 Japan (Asia)
Microsoft Corporation | 13/03/1986 - 19/01,/2007 5,261 USA (America)
General Motors 02/01/1962 - 19/01/2007 11,340 USA (America)
GlaxoSmithKline ple | 09/07/1986 - 19/01/2007 | 5,179 UK (Europe)
Barclays plc 10/09/1986 - 19/01/2007 5,136 UK (Europe)

42
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The data set was downloaded from the finance subdirectory of the website ‘Yahoo.com’.
The sample period covered ranges from 1950 to January 2007 with varying commencement
dates. Data from developing countries has not been considered owing to the low level of
activity on stock exchange markets and stock data inaccessibility. Research has shown
that low volume and thinly traded markets are inappropriate for efficiency since they lack
liquidity and do not provide smooth transfer of information. Further, price indices in small
markets tend to exhibit inflated volatility thereby complicating statistical inference (see

Darrat and Zhong (2000)).

3.1.1. Overview of the selected indices and stocks.

e Financial Times 100 Index: The Financial Times 100 Index (FTSE 100) is
a share index that is commonly used as a benchmark for the performance of
stocks traded on the London Stock Exchange. The FTSE index consists of the
100 largest companies traded on the London Stock Exchange (based on market
capitalization). The companies in the list include BP, British Airways, Barclays
Bank, GlaxoSmithKline, Unilever and Vodafone just to mention a few. The stocks
represent about 80 percent of the value of all issues traded on the exchange. The

FTSE index is used as a benchmark for success of the British economy.

e Nikkei 225 Index: The Nikkei 225 Index is a stock market index for the Tokyo
Stock Exchange (TSE). It is composed of 225 leading stocks traded on the Tokyo
Stock Exchange. Major companies in this index include Sony Corporation, Sharp

Corporation, Toyota Motor Corporation and Japan Airlines Corporation.

e Standard and Poors 500: The Standard and Poors 500 (S&P 500) Index is a
market index based on a portfolio of 500 different stocks that are traded on the
New York Stock Exchange (NYSE), American Stock Exchange (AMEX), and the
Nasdaq National Market System. The 500 stocks is composed of 400 industrials,
40 utilities, 20 transportation companies, and 40 financial institutions. Compared
to the DJIA Index, the S&P 500 index is viewed as a better representation of the
US market as it incorporates more firms from a wide range of fields. These firms
include Chevron Corporation, Apple Computer, Cisco Systems, General Motors

and PepsiCo Inc.
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e Stocks: The stocks for Barclays plec and GlaxoSmithKline plc traded on the
London Stock Exchange are used. US stocks used are those for Microsoft
Corporation and General Motors while from the Tokyo Stock Exchange we use

stocks for Toyota Motor Corporation and Sony Corporation.

3.2. Model Specification

Under the Double Gamma model, we model the differences between the closing prices of
stock on day ¢t and day ¢ — 1, that is, P, — P,_;. The notation P(t) and P(¢t — 1) is used

interchangeably to mean P; and P;_; respectively. Accordingly we define the following:

Let AP, = P, — P,_1 be the change in closing price from day t — 1 to day ¢.

X; = P, — P,_y > 0 with probability P
In particular, denote AP, = P, — P,_; = 0 with probability R

Y, = P, — P,_; <0 with probability @
where P+ R+ Q@ = 1.

3.2.1. Model Assumptions. The proposed model is based on the following

assumptions:

(i) The process followed by P, is a discrete time process.
(ii) AP, are independent and identically distributed.

(iii) AP, is independent of time .

(iv) X <a, 5)
(v) ¥,
(vi) Variations in asset price are random.

(vii) The present price P, possesses a Markov property.

(viii) On two successive trading days, the asset price can either increase or decrease, not

stay constant.

Owing to the nature of the data used, the closing prices can only be quoted at the end
of each trading day. Thus it is reasonable to assume that the process followed by P,
is a discrete time process. Further, since all known information is used optimally by
market participants, variations in asset prices are random and that the present price F; is

independent of all past prices (see section 1.3).
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Charts produced depicting the stock price changes P(t) — P(t — 1) shown in Appendix A
are revealing. A closer look at the histograms produced, it is tempting to conclude that
actual differences, P(t) — P(t—1) (positive and negative), suggest a normal distribution for
each of the indices and stocks. On the other hand, histograms of the absolute differences,
|P(t) — P(t —1)|, for each index and stock suggest a distribution of the gamma type. (See
figure below and Appendix A, parts (b), (c¢) and (d)).

A common approach to testing the normal fit is the use of quantile-quantile (Q — @)
plots. Parts (d) of the charts in Appendix A show normal @ — @ plots for the differences,
P(t)— P(t—1), for each of the indices and stocks. From Figure 3.1, showing the histogram
of absolute price differences and the Q — @ plot for the S&P 500 index, the deviations from
the straight line and thus from normality are obvious (see also parts (d) of each figure in

Appendix A).
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F1GURE 3.1. Histogram of Absolute Price Differences and Q-Q Plot for S&P 500

It can also be seen from Figure 3.1 that the curved pattern with slopes increasing from left
to right in the histogram (on the left) for the absolute differences suggests that the data
distribution is skewed to the right. This is a feature that is synonymous with the gamma

distribution.

The last assumption is not completely true in the real world. However, it can be seen
from Appendix B that stock prices or values of indices are rarely constant. Over 5,761

trading days the FTSE index changed approximately 0.30% of the time while the S&P
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500 index remained constant 124 times over a period of 14,353 trading days representing
0.86% of the time. Overall, out of a total 62,163 daily closing values, stock prices and index
values remained constant 2,612 times which represents 4.2% of the time. It is, therefore,
reasonable to assume that stock prices either increase or decrease on any two succesive

trading days. Thus the assumption holds at least 95.8% of the time.

3.3. Methodology

Two models are considered for simulating stock prices. These are the lognormal model used
in the Black-Scholes option pricing model and the double gamma model that is proposed in
this thesis. Simulation is done using the Statistical Package for the Social Sciences (SPSS)
and Microsoft Excel. Charts are drawn using SPSS while random uniform numbers in the

interval [0, 1] are generated by the random number generator in Excel.

The methodology used depends on the model being simulated and the approach followed.
The modeling is carried out using three approaches. Two approaches have been used in
the simulation under the double gamma model while the third approach is modeled along

the lognormal distribution. These are outlined below.

(1) Approach 1: AP, is modeled as following a modified double gamma distribution
with probability p of an “up” movement (i.e. P, — P,_; > 0) and probability 1 —p
of a “down” movement (i.e. P, — P_; <0).

(2) Approach 2: AP, is modeled as following the plain double gamma.

(3) Approach 3: In &

is modeled as following the normal distribution.
t—1

In each of the three approaches sample means of the differences between successive observed

closing prices are obtained. From the law of large numbers, the sample mean of the observed

AP, is used as an estimator of
E[Apt] = E[Pt — Ptfl] = Ozﬁ

1
of the modeled Gamma(a, B) = I'(a, ) for approaches 1 and 2 above.

3.3.1. Parameter estimation for the models. We use the gamma maximum

likelihood estimators that were highlighted in subsection (2.2.1) for approaches 1 and 2.
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The scale and location parameters of the gamma distribution are estimated using

=2

AP, ~ 2

L and 0= S—,
AP,

where s? is sample variance of price differences while AP, is sample mean of price

differences.

Random numbers are generated by the computer using the random number generator
command in Microsoft Excel. Using the parameters that have been estimated using
historical data, we use the Excel function ‘GAMMAINV’ to obtain a value for the gamma

probabilistic input.

Under approach 3, we use the procedure in Hull (1989), to estimate the volatility
S 2
empirically. Since ln?T is normally distributed with mean (p — %)(T —t) and variance

t
o?(T —t) (see Hull (1989)), two parameters are estimated: u and o.

Assuming no intermediate cash flows such as dividends, let

Si
Si1’

where S; is the closing price of the asset at the end of the ith time-interval. As S; = S;_ie"

w; = In

is the continuously compounded return in the ith interval, an unbiased estimator, s of the

standard deviation of the u.s is given by

1 _
S = \/n — 12?:1(1% — U)Q,

where @ is the mean of the w}s.

With the parameters estimated and random probabilities generated, we use the Excel
function ‘NORMINV’ to obtain a value for a probabilistic input that is normally

distributed. Then the estimated stock price under the lognormal model is obtained as
P =P 1%

where ]375 is the simulated stock price at time t, P,_; is the actual closing stock price at time
t — 1 while z; is the simulated probabilistic input under the normal distribution obtained

using the Excel command function ‘NORMINV’.

3.3.2. Model Properties. Using the assumption that the asset price can either
Xy = P, — P,_; > 0 with probability P
Y, =P, — P,_; < 0 with probability @)

increase or decrease, then AP, =



3.3. METHODOLOGY 48

since R = 0.
Thus the probability of an “up” movement and “down” movement would, respectively, be

redefined as

Further as 0 < X; < oo and —oco < Y; < 0, then under the gamma distribution assumption,

X; ~ Ga(ay, 1) and

Bi(Byx)~le=Fe

f(z) = Ta, , O<z<oo
while Y; ~ Ga(as, 52) and
_ az—1,062y
9(y) Bl loy)™ e —00 <y <0,

where x = X; and y = Y;.

Let M be the number “up” movements (that is, when P(t) > P(t — 1)), and N be the
number of “down” movements in time interval [0, 7.

Let i be the rate at which prices change such that the rate at which the “up” movements
occur is pp while the rate at which the “down” movements occur is u(1 — p). Then we

define
(3.3.1) P,=P 1+ X AP = Py + S0 AX + 20 AY,

where M and N are random.

Let M and N be independent. Then by Theorem 2.1.18,
M ~ Poiss((up)T)

and

N ~ Poiss((u(1 —p))T).

Further since M and N are independent and using properties of the Poisson distribution

it follows that for period T,

M + N ~ Poiss(uT).



3.3. METHODOLOGY 49

Let M and Xj be independent and N and Y} be independent. Then
E[R] = P14+ E[M|E[Xy] + E[N]E[Y}]
= P+ E[M|E[Xy] — E[N]E[X4]
= P+ EXy{E[M] - E[N]}

= P+ %[upT — (u(1 = p))T

a
= P+ B[upT — T + ppT]

(8
= P+ B(QMPT —uT)

aul
= P+ %(m —1),

where

(i) the parameters for Ga(a, 3) are obtainable from the historical data using maximum
likelihood estimators.

(ii) p = 2N T is the time period.
P

P+Q

(i) p =
Since = w, then the model simplifies to

a(M + N)
B

Further since under the last assumption the price does not remain constant, then over

EP] = P+t (2 - 1),

period T' the total number of ‘up’ and ‘down’ movements must be equal to the number of

trading days, that is, M + N =T. Thus

(3.3.2) E[P] =P 1+ %(219 —1).

This result is used to estimate future stock prices and index values. Hence
(3.3.3) P=P_i+ %(2;9 —1).

Let the residual error at time ¢ be denoted &, where

€t:ﬁt_Pt'

The approximation is improved by introducing a shift factor. The shift factor is found by

taking the mean of absolute residual errors, £,_7, from the first trading day to day ¢ — 1.
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This is used since it represents the average absolute deviations from the true value. The

shift factor is applied as follows:

e ifondayt—1, g1 <0, then add 7 and thus ﬁt =P_,+ %(2}9 —1)+&.
e ifondayt—1, e,_1 > 0, then subtract £, and thus f’t =FP_ 1+ %(2}9 - 1) —&1.

Hence
~ ol
(3.3.4) Pr=P 1+ F@p —1) &,

In addition, with p = w specified, the probability density function of AP, = P, — P,_;

would be estimated by the double gamma distribution given by

AP —p]

L|AP, — p|*~te 5

(3.3.5) f(AP) =3 foTa ,

where u is the location parameter while o and 3 are shape and scale parameters

respectively.

3.3.3. Measuring Model Performance. To see how well a model performs, we
look at the relative errors generated by the models. Suppose ﬁt is the stock price at time ¢
generated by the model and P; is the actual or observed price on the market. The relative

error (RE) is calculated by

~

|P; — P

(3.3.6) RE = —4

If the relative error (expressed in percentage) is small, it means the model gives a good
approximation to the stock price reflected on the market. Conversely, if the relative error is
big, then the model is considered to be a poor approximation to the market price. However,
apart from checking how close the model price is to the market price, it is also important to
check whether the model produces over- or underestimates to the market. In other words,
it is important to see when a model underprices and overprices a specific stock. To achieve
this, we modify the relative error formula to

_PB-P

3. E
(3.3.7) R 5

A negative relative error then means that the model underprices the specific stock whereas

a positive relative error means that the model overprices the specific stock.
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The other approach is to look at the absolute value of the errors. The absolute values of
the errors are used to assess the magnitude of the error. The best model is the one that

results in least values of the absolute errors. The absolute value of the errors are given as
(3.3.8) E=|P,— D)
We use both approaches in the analysis of results obtained.

In order to assess the performance of the proposed model, simulation is carried for each
stock/index thirty (30) times. The estimate P, for each simulation is recorded and the
absolute errors ¢ = |P, — ]3t| are calculated. The mean values of the errors and the
estimates 1315 are also calculated. The approach that results in the least value of the mean
errors is considered to be the best approach for modeling prices of stocks and indices that

have been studied.



CHAPTER 4

Results, Analysis and Conclusion

4.1. Results and Analysis

In this chapter, results that were simulated using the proposed double gamma model and

lognormal model as described in section 3.3 are presented and compared. The simulation

results can be found in Appendix C. In Appendix D, relative errors for all the stocks and

indices are presented. The relative errors given are for the last 34 days to present time ¢,

that is, 19th January 2007. Percentage relative errors may be obtained by multiplying by

100.

Table 4.1 shows partial simulated results obtained for Microsoft Corporation in comparison

with the actual closing stock price of 31.11 as recorded on 19 January 2007.

TABLE 4.1. Simulated Results for Microsoft Corporation

Simulation ]3t App. 1| Error App.1 ﬁt App. 2 | Error App. 2 ﬁt App. 3 | Error App. 3

1 31.8 0.7 34.0 2.9 33.3 2.19

2 32.3 1.2 31.2 0.1 32.1 0.99

3 32.7 1.8 32.0 0.9 34.9 3.79

4 29.8 1.5 29.9 1.2 33.3 2.19

28 34.0 2.9 33.4 2.3 33.0 1.89

29 36.4 5.3 40.1 9.0 33.4 2.29

30 33.7 2.6 33.1 2.0 32.2 1.09
Mean 33.0 3.5 33.5 2.9 33.6 2.5
Values

Considering the size of absolute errors for each approach, it can be seen that the lognormal

model outperforms the other approaches using the proposed double gamma modeling. As

52
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simulated results for Microsoft Corporation indicate, after 30 simulations approaches 1 and
2 gave average values of 33.0 and 33.5 respectively against the value of 33.6 obtained using
approach 3. However, the average values using approaches 1 and 2 are closer to the actual

recorded value than what approach 3 generates.

Approach 1 turned out to be the best in modeling the FTSE and Nikkei indices
outperforming the traditional lognormal model. While the actual FTSE index value on day
t (19th January 2007) was P, = 6237.2, after 30 simulations approach 1 gave an average
value of }A)t = 6237.8 which is a very good approximation. On the other hand approach
2 outperformed the rest in modeling the values of the S&P 500 index. The predicted
value at time t given by the average was found to be ﬁt = 1427.7 compared to the actual
value of 1430.5. However, both approaches 1 and 2 turned out to be extremely poor at
modeling some stock prices. The worst results are obtained particularly for General Motors,
GlaxoSmithkline, Sony and Toyota Corporation. However, the simulation results show that
approach 3, lognormal model, is appropriate for modeling prices of all stocks that were

studied. Table 4.2 summarises the ranking of each approach at modeling stocks/indices.

TABLE 4.2. Model Performance Ranking

Index/Stock | Approach 1| Approach 2 | Approach 3
FTSE 1 2 3
SP 500
GlaxoSmithKline

Microsoft Corp.

General Motors

Sony

Toyota Corp.

Barclays plc
Nikkei

_ W | W W W W W |
W N (NN NN DN
N [ R | R | R~ |~ |F~|WwW

While approaches 1 and 2 faired poorly at modeling prices of nearly all stocks, from the
results it can be observed that the poor results were extreme in cases where N > M (that

is, where the number of simulated ‘down’ movements were greater than the number of ‘up’
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movements. Simulation figures for General Motors and Sony Corporation in Appendix B

reflect this.

From the simulation results in Appendix B, it can be observed that the double gamma
approaches are more accurate in modeling high valued stocks and indices. This is evident
in the prediction of the FTSE and Nikkei indices by approach 1 and the prediction of the
S&P 500 index using approach 2. This is where the lognormal model performs very poorly.
One common feature of the stocks for which the lognormal model produced good estimates

is that all of them are lowly valued.

While the absolute error approach for assessing model performance may suggest some
weaknesses in approaches 1 and 2, the use of relative errors suggests otherwise. Results
of relative errors shown in Appendix D show that while the lognormal model is a better
predictor of all stocks, the other two approaches are still competitive. For instance approach
2 is not extremely bad in predicting stock prices for Barclays plc since the relative errors
are on average less than 5%. To illustrate this, partial relative errors for Barclays plc are

reproduced in table 4.3.

TABLE 4.3. Relative Errors for Barclays plc

P, Actual ]3t App. 1 ﬁt App. 2 f’t App. 3| RE App. 1| RE App. 2 | RE App. 3
59.4 67.688885 | 61.25519 | 56.988994 | 0.1395435 0.03123 0.040589
59.14 67.97722 | 61.54478 | 58.459572 | 0.1494288 0.04066 0.011505
59.43 | 88.275556 | 61.84436 | 58.92972 | 0.1488399 0.04063 0.008418
59.73 | 68.533891 | 62.10395 | 58.773339 | 0.1473948 0.03974 0.016016
53.89 | 62.557285 | 56.16242 | 56.28486 | 0.1608329 0.04217 0.04444
54.06 | 62.535621 | 56.14201 | 52.747384 | 0.1567817 | 0.03851 0.024281
54.04 | 61.643956 | 55.2561 | 56.746861 | 0.1407098 0.02242 0.05009

As Appendix D shows, relative errors relating to approaches 1 and 2 are large:

least 10% for Sony Corporation stocks, more than 40% for both Toyota Corporation
and GlaxoSmithkline ple stocks and at least 20% for General Motors stocks.

This

at

is
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in agreement with our earlier observation. On the other hand the relative errors of about
1% for Microsoft Corporation under approach 2 and Nikkei under approach 1 suggest that
the double gamma performs very well. The relative errors of less than 1% for both S&P
500 under approaches 1 and 2 and FTSE under approach 1 confirm that the double gamma

model has effective prediction capability.

When p = 0.5,
EIR) = Pt -1
reduces to
E[Pt] = P

which confirms the notion that the best estimate of stock price at time ¢ is its value at
time ¢t — 1. This, however, did not arise in the study of the stocks and indices that were

used.

4.2. Conclusion

In mathematical modeling, assumptions are formulated to simplify the number of variables
in the problem. While this makes the analysis simpler but it, however, makes the model
less accurate. The double gamma model developed is supposed to be valid while the
assumptions that were made hold. In the real market place some of the assumptions may
not hold while others may hold. On the other hand, certain factors such as payment of
dividends that were not incorporated into the model may negatively impact on the results.

The model developed in this thesis is no exception.

Before developing the model, it was necessary to review the behaviour of the stock prices,
the financial market system and the justification for studying stock prices and indices.
This was done in Chapter 1. The unpredictable nature of stock prices provoked the need
to review processes that are random in nature called stochastic processes as well as methods
of estimating some important statistics representing such processes and simulation. Efforts
by other researchers in modeling stock prices and financial time series are also reviewed.
One of the models, the lognormal model of stock prices, is used as a comparator to the
model developed in this thesis. The concepts and models have been covered in Chapter 2.

The concepts covered are used in the development of the model in this thesis.
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In Chapter 3, the data is reviewed and the model is developed. The methodology used to
obtain the results is also explained. The results obtained are presented and analysed in
Chapter 4. The results show that the model developed has strong prediction capabilities
of indices and stock prices through Markov chain modeling. It was seen that the model
developed in this thesis outperformed the traditional lognormal model in modeling some
stocks or indices. However, due to the random nature of stock prices, deviations from

actual stock and index values are expected.

While the double gamma model has shown strong prediction capabilities of indices and
stocks, further improvements to the model can be made. One possible way would be to
increase the number of stocks and indices that are modeled. A few more stocks and indices
taken from different stock exchanges could be examined. The results of such studies would

assist in making modifications to the model.

Further since the model performed very well for two of the three indices, this may suggest
that it would be more applicable to indices than stocks. Thus more indices could be
studied to check whether the model would still perform very well. In addition, a few more
simulations could also help improve the proposed model compared to the thirty simulations

that were undertaken in this study.

The limitation of this study lies in two aspects. Firstly only those stock and index values
that are nonconstant can be modeled. Thus caution must be exercised for generalisation
of the results to other data. Secondly, there is need to have a large set of data values which
may somewhat be difficult to find. Without a reasonable amount of data available, the
model may not yield the expected results. Other assumptions, such as the price differences
being identically distributed, may not be valid due to the fact that data taken over a long
time range may have been exposed to different economic environments that may impact

on their distributions.

The gamma distribution provides a considerable flexibility as the distribution can take
a number of shapes. Thus what is required is the estimation of shape and location
parameters, a and [ respectively. These parameters can be estimated from historical

prices of stocks and index values.

This study has in a way achieved the main objective and has also managed to set

the platform for further research in modeling stock prices and indices by exploring the
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distribution of the differences P,— P,_;. The degree of accuracy with which the model is able
to estimate index values provides the strongest hint that the double gamma distribution
can play a major role in modeling the stock market, in general, and indices, in particular.
Although this research focussed on stock prices and indices, it could be extended to
include the possibility of pricing options and incorporating other factors such as payment

of dividends into the model.
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A. CHARTS

FIGURE 1: Charts for Observed FTSE Values
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A. CHARTS

FIGURE 2: Charts for Observed S&P 500 Values
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A. CHARTS

FIGURE 3: Charts for Observed Nikkei Values
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A. CHARTS

FIGURE 4: Charts for Observed Glaxosmithkline Values
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A. CHARTS

FIGURE 5: Charts for Observed Microsoft Corporation Values

200
1400
1200
o l .
g 000
3
g‘ a 200
T o ’
[ oo
3 i H 400
E‘ 200
5 ol s ]
E -84 -G4 -47 =0 -1.2 el ZA 2.8 L= 7.2
4000 o {000 2000 =00 4000 e 00 72 55 2.8 -Z1 -4 1.2 2.0 4.7 c4 a1
Trading Day Actual Diffarances Ft)-Ft-1)
Flg. 5 (a): Scatter Plot for Milcrosoft Corp. Flg. 5 (b): Histogram for Mlcrosoft Corp.
Mormal Q-0 Plot of Actual Diffarences Pit)-Pit-1)
1l
000
10
o
1000 20
=
g 10 . o m o oo mooo
3
L]
3 25 4.5 71 I%- 0
1.4 57 53 5.2 10 = a0 = = 3 20
Absolute Diffarencas |Pt)-Pit-1)| Observed Value
Flg. 5 (¢): Histogram for Milcrosoft Corp. Flg. 5 (A Q-Q Plots for Mlcrosoft Corp.
[ -u]u]
400
200
o o
-g1 4.1 =30 2.0 a
-4.5 -3.5 -2.5 -1.4 -4

Flg. 5 () Histogram: P(t)-P(t-1)>0 Flg. 5 (f): Histograms: P(t)-P(t-1)<0



A. CHARTS

FIGURE 6: Charts for Observed General Motors Values
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A. CHARTS

FIGURE 7: Charts for Observed Sony Corporation Values
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A. CHARTS

FIGURE 8: Charts for Observed Toyota Corporation Values
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A. CHARTS 73

FIGURE 9: Charts for Observed Barclays ple Values
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APPENDIX B

Frequency of price changes

Index/Stock Number | Frequency | Frequency | Frequency
of trading of ‘up’ of ‘down’ of ‘no’

days movements | movements | movement
FTSE 5,761 3027 2717 17
Nikkei 225 5,672 2,910 2,749 13
SP 500 14,353 7,564 6,665 124
Sony Corp. 5,997 2,713 2,877 407
Toyota Corp. 3,464 1,667 1,618 179
Microsoft Corp. 5,261 2,597 2,491 173
General Motors 11,340 5,212 5,426 702
GlaxoSmithKline plc 5,179 2,394 2,374 411
Barclays plc 5,136 2,348 2,202 586
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APPENDIX C

Simulation Results



C. SIMULATION RESULTS

Table 51: FTSE SImulatlon Results

76

FTSE: Actual £ on19/0107 = 62372
N Error N Error N Errer

Simulation £, App.1 App. 1 F, App.2 App. 2 £, App.3 App. 3
1.0 5236.9 0.3 §231.0 5.2 §297.51 50.31
2.0 5237.2 0.0 5229.7 7.5 §189.2 48
3.0 52358 1.3 52354 1.8 63432 106
4.0 5237.5 0.3 6231.7 5.5 G284 8.8
5.0 5238.0 0.8 52328 4.4 §279.2 42
6.0 G5238.6 2.4 g232.7 4.5 84268 189.68
7.0 5236.7 0.5 52304 5.8 52147 22.5
8.0 G238.2 1.0 52328 4.8 53003 5.3.1
9.0 62377 0.5 5231.7 5.5 G242 .3 5.1
10.0 5236.9 0.3 §231.4 5.8 G263.6 268.4
11.0 5239.7 2.5 62325 4.7 G243.8 6.6
12.0 5230 8 2.6 5231.1 5.1 5206 4 5018
13.0 5237.8 0.6 62313 5.8 G242.6 5.4
14.0 5235.8 1.4 5234 2 3.0 G303 .4 G58.2
15.0 5238.4 1.2 §231.4 5.8 52993 621
16.0 5238.8 1.6 62326 4.8 62756 38,4
17.0 5239.4 2.2 52328 4.8 52926 55.4
18.0 52353 1.8 5229.6 7.8 6074.0 163.2
19.0 52363 08 52306 5.5 62328 4.4
200 52377 05 6231.8 5.3 53006 153.4
21.0 52382 1.0 52308 5.3 G284 .8 478
22.0 52383 1.1 52307 5.5 §112.0 125.2
23.0 52381 0.8 52318 5.4 §312.0 V4.8
24.0 5237.8 0.5 52328 4.8 §236.7 0.5
25.0 52383 1.1 52334 3.8 G236, 7 0.5
28.0 52386 1.4 §231.0 5.2 52438 558
27.0 52408 3.8 62334 3.8 61338 103.3
28.0 52350 1.2 52288 8.3 51630 V4.2
29.0 5239.2 2.0 §232.8 4.4 52455 £.4
30.0 52362 1.0 52302 7.0 5287 .1 585
Mean Values 6237.8 1.2 5231.8 5.4 6256.7 55.2




Table 52: S&P 500 SImulation Resulis

C. SIMULATION RESULTS

S&P 500: Actual £ on 19/01/07 = 1430.5

L3

N Error N Error N Errer

Simulation £, App.1 App. 1 F, App.2 App. 2 £, App.3 App. 3
1.0 14398.0 8.5 1427.0 3.5 14309 0.4
2.0 1440.5 10.0 1429.4 1.1 14035 27
3.0 143E8.9 .4 1426 2 4.3 14345 4
4.0 1439.2 8.7 1427.2 3.3 14196 10.8
5.0 1438.8 8.4 1427 .5 3.0 14245 5]
6.0 1440.2 9.7 1427.7 2.8 14094 21.1
7.0 14406 10.1 142897 0.8 14207 9.8
8.0 1440.8 10.3 1428.8 1.7 14551 24.8
9.0 1437.8 7.3 14238 5.7 14136 16.9
10.0 1438.9 5.4 1426.2 4.3 14186 11.8
11.0 1438.7 g2 14243 g.2 1446.0 15.5
12.0 14386 S.1 1476 8 3.7 14132 17.3
13.0 1438.6 8.1 1427 .4 3.1 14433 12.8
14.0 1438 3 8.8 1427 .3 3.2 136858 346
15.0 1440.5 10.0 1429.4 1.1 1411.7 18.8
16.0 1440.2 9.7 1429.4 1.1 14225 g
17.0 14411 10.8 14291 1.4 1420.0 10.5
18.0 1439.2 8.7 1427 .3 3.2 14236 5.8
19.0 1440.5 10.0 1430.0 0.5 14208 9.7
200 1438.0 7.5 1424 3 5.2 14301 0.4
21.0 1440 1 9.5 14288 1.6 1447 2 18.7
22.0 1440.9 10.4 14301 0.4 14198 10.7
23.0 1437.8 7.3 14241 5.4 1441 8 11.3
24.0 1440.2 9.7 1429.5 1.0 14106 19.9
25.0 1440.3 9.8 1427 .3 3.2 14265 4
28.0 1439.7 9.2 1428.0 2.5 14256 4.9
27.0 1437.7 72 1424 .6 5.8 14333 2B
28.0 14415 11.1 14288 0.8 14156 14.8
29.0 1440.9 10.4 1428.7 1.8 14434 12.9
30.0 14415 11.1 14308 0.4 14381 7.8
Mean Values 1439.7 9.2 1427.7 2.8 1425.3 12.4
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C. SIMULATION RESULTS

Table 53: GlaxoSmithkline ple Slmulatlon Results

GlaxoSmithkline ple: Actual £ on 19/01/07 = 5595

N Error N Error N Errer

Simulation £, App.1 App. 1 F, App.2 App. 2 £, App.3 App. 3
1.0 g1.1 25.2 56.4 0.4 565 055
2.0 32.6 23.4 27.5 °B.5 57.7 1.¥5
3.0 47.8 8.1 434 12.6 551 0.Eh
4.0 161.8 105.7 136.7 20.8 573 1356
5.0 G925 367 V7.3 21.4 550 085
6.0 86.8 =0.8 55.2 0.8 550 085
7.0 78.2 23.3 56 .4 0.4 546 1.35
8.0 47.3 8.7 42.8 13.2 57.0 1.05
9.0 51.8 4.2 48.0 10.0 559 0.05
10.0 9.3 42.4 g1.1 25.2 553 0.65
11.0 44.7 11.3 351 20.8 551 08B
12.0 56.4 351 49 8 5.2 554 055
13.0 39.0 17.0 30.0 28.0 57.2 1.25
14.0 148.2 923 1348 V8.8 56.8 085
15.0 2421 186.2 221.0 1651 55.8 015
16.0 84.9 29.0 65.8 8.8 561 015
17.0 119.4 53.5 100.3 44 .4 553 0.65
18.0 95.4 40.5 734 17.5 57.2 1.25
19.0 136.7 80.8 125.2 68.3 552 0v5
200 19.8 362 14.7 41.3 581 215
21.0 27.5 28.5 23.0 33.0 545 1.45
22.0 441 11.9 40.9 15.1 55.0 095
23.0 130.8 75.0 102.2 483 558 0.05
24.0 20.0 26.0 24.3 1.7 5549 0.05
25.0 48.6 7.4 44 .1 11.9 554 0.55
28.0 G0.5 13.7 53.0 3.0 575 155
27.0 88.8 32.8 639 8.0 5648 0.05
28.0 86.8 30.8 55 .8 8.8 545 1.45
29.0 184.8 128.7 169.3 112.4 556 035
30.0 205.7 146 8 178.8 122.8 556 0.35
Mean Values 89.4 45.3 74.6 356 559 0.3

78



Table 54: Microsott Corporation Simulatlon Results

C. SIMULATION RESULTS

Microsolt Corporation: Actual £ on 19/01/07 = 31.11

N Error N Error N Errer

Simulation £, App.1 App. 1 F, App.2 App. 2 £, App.3 App. 3
1.0 31.8 0.7 24.0 2.9 333 219
2.0 32.3 1.2 31.2 oA 3241 088
3.0 32.7 1.6 320 0.8 348 378
4.0 29.5 1.5 £a.8 1.2 333 218
5.0 321 1.0 301 1.0 357 458
6.0 5.5 4.4 373 g.2 4.9 3.78
7.0 32.8 1.7 32.4 1.3 354 428
8.0 2.6 1.5 223 1.2 351 3.99
9.0 34.2 3.1 234.8 3.7 335 2.38
10.0 35.0 3.9 374 5.3 244 3.298
11.0 32.9 1.8 322 1.1 330 1.68
12.0 33.2 351 328 1.8 324 1.28
13.0 1.8 0.7 30.8 0.3 328 1.68
14.0 36.4 5.3 41.5 10.4 356 4.48
15.0 3.7 2.5 33.9 2.8 326 148
16.0 3.0 1.8 33.0 1.9 33.7 2.58
17.0 30.3 0.8 20.4 0.7 244 3.298
18.0 3.6 2.5 331 2.0 323 118
19.0 28.1 2.0 288 2.2 338 2.68
200 34.2 3.1 348 3.7 342 3.08
21.0 31.3 0.2 30.0 1.1 346 348
22.0 24.5 3.5 28.0 5.9 341 2.99
23.0 34.8 3.8 38.7 5.8 338 2568
24.0 3.7 2.5 228 1.5 324 1.29
25.0 32.9 1.8 227 1.6 328 1.69
28.0 c8.6 2.5 28.8 2.3 330 1.9
27.0 34.4 3.3 356 4.5 326 148
28.0 34.0 2.8 33.4 2.3 330 1.88
29.0 6.4 5.3 401 9.0 334 2.29
30.0 33.7 2.8 331 2.0 322 1.08
Mean Values 33.0 3.5 33.5 29 336 2.5
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C. SIMULATION RESULTS

Table 55: Genaral Motors Simulation Results

General Motors: Actual Fi on 190107 = 31.55

N Error N Error N Errer

Simulation £, App.1 App. 1 F, App.2 App. 2 £, App.3 App. 3
1.0 -82.1 113.7 21.8 01 318 0.25
2.0 -72.B 104 .4 50.4 1B.9 313 0.25
3.0 -B8.8 @5 420 10.5 304 1156
4.0 -134.0 165.8 -24.7 B6.3 323 075
5.0 -85.1 126.7 87 228 318 035
6.0 -15.4 47.0 180.9 149.4 225 085
7.0 -75.8 108.2 281 2.5 330 1.45
8.0 -41.3 72.9 164.3 132.8 318 0.25
9.0 26,3 5.3 2671 335.8 3189 0.35
10.0 -55.3 86.9 28.5 5.0 335 1.85
11.0 -109.0 140.8 11.4 20.2 315 0.05
12.0 -89 7 351 -5.0 38.6 321 055
13.0 -125.6 167.2 441 75.7 313 0.25
14.0 -58.0 80.8 V5.3 43.8 324 085
15.0 -60.8 92.4 £68.5 55.0 316 0.05
16.0 -G08 a2.4 ga.2 57.7 314 015
17.0 -78.4 110.0 11.4 20.2 326 1.05
18.0 -B6.2 g7.8 726 411 327 1156
19.0 -123.8 155.4 -23.8 55.4 313 025
200 -84 1 126.7 17.8 13.7 316 0.05
21.0 -114.5 1461 127 44 3 321 055
22.0 -72.8 104.4 21.8 01 325 095
23.0 -182.1 213.7 -521 113.7 323 075
24.0 -110.8 142.4 -89 41.5 324 0.85
25.0 -149.7 181.3 728 1044 323 075
28.0 -73.B 105.4 293 7.8 318 0.25
27.0 -82.1 113.7 °8.2 3.4 321 055
28.0 -54.8 116.5 272 4.4 322 0.55
29.0 -83.0 114.8 2.2 28.4 20.7 085
30.0 -38.8 702 1448 113.3 318 0.25
Mean Values -82.2 110.5 42.3 53.9 320 0.6

80



C. SIMULATION RESULTS

Table 56: Sony Corporation Slmulatlon Results

Sony Corporation: Actual £ on 19/01/07 = 47.06

N Error N Error N Errer

Simulation £, App.1 App. 1 F, App.2 App. 2 £, App.3 App. 3
1.0 15.3 1.8 49.7 2.8 479 0.54
2.0 14.8 323 -41.9 89.0 501 3.04
3.0 14.5 326 1.8 88.0 482 114
4.0 16.1 1.0 -38.86 g85.7 47.8 074
5.0 14.8 323 =381 g86.2 488 1.84
6.0 15.4 .7 -39.2 £8.3 474 034
7.0 15.4 3.7 -38.3 86.4 47 .8 0.74
8.0 17.3 29.8 =343 g1.4 47.0 0.08
9.0 14.9 2.2 ~39.8 g£6.9 466 048
10.0 17.0 201 =332 80.3 479 0.54
11.0 16.1 1.0 -36.8 g3.9 4.8 1.64
12.0 14.5 326 -2 g8.2 47 8 0.74
13.0 13.8 3.3 434 0.5 481 1.04
14.0 16.2 30.8 453 1.8 47 .3 0.24
15.0 15.1 320 =377 84.8 492 214
16.0 16.5 2306 -=37.0 841 4889 1.84
17.0 15.2 1.8 =413 5.4 49.0 1.894
18.0 45.5 1.6 48.2 1.1 48.4 1.34
19.0 15.5 .6 -32.2 783 47 7 0.64
200 15.1 32.0 =385 86.65 480 054
21.0 15.3 31.8 -40.2 g87.3 47 6 0.54
22.0 13.7 3.4 =44 .3 1.4 46.7 038
23.0 15.3 31.8 -40.2 g87.3 484 1.34
24.0 16.0 1.1 -35.5 535 474 0.34
25.0 14.6 2.5 -4 .4 8.5 476 0.54
28.0 15.4 1.7 ~35.4 g5.5 46.7 038
27.0 14.9 322 -40.9 g8EB.0 4490 1.54
28.0 13.3 338 -4 5 e1.5 444 2.34
29.0 15.5 1.8 -358.9 8.0 47.8 074
30.0 16.0 311 =377 84.8 441 2.04
Mean Values 16.3 30.8 -306 77.9 43.1 1.1
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C. SIMULATION RESULTS

Table 57: Toyota Motor Corperation Slrmulatlon Results

Toyota Motor Corporation: Actual F on 19/01/07 = 132,33

N Error N Error N Errer

Simulation £, App.1 App. 1 F, App.2 App. 2 £, App.3 App. 3
1.0 247.5 115.2 155.0 227 13 1.33
2.0 256.5 124.2 172.8 40.6 131.0 1.33
3.0 183.8 51.5 126.2 71 1355 317
4.0 211.7 79.4 134.3 2.0 1336 1.27
5.0 -224.8 357.2 -260.7 383.0 131.5 0E3
6.0 -2589.7 392.0 -2Ve.8 411.9 132.8 057
7.0 -2.36.8 3681 -258.7 391.0 1304 1.83
8.0 -267.8 390.9 -284.0 426.3 1324 0.07
9.0 -261.7 3540 -282.6 414.9 125.0 733
10.0 -303.4 435.7 3313 199.0 1325 o7
11.0 229.8 973 146.0 13.7 132.6 027
12.0 120.2 351 110.2 221 131.5 083
13.0 105.3 27.0 g2.4 49.9 1304 1.83
14.0 211.7 7.4 1371 4.8 1308 153
15.0 399.8 267.5 3221 189.8 1305 1.83
16.0 1567.89 25.8 112.2 201 1303 2.03
17.0 3281 195.8 211.7 79.4 131.5 0.83
18.0 °23.8 .3 1371 4.8 1341 177
19.0 163.8 .6 120.2 12.1 1303 2.03
200 126.2 6.1 1043 °B.0 1338 157
21.0 178.8 485 118.2 14 .1 1338 147
22.0 187.8 55.5 126.2 5.1 1302 213
23.0 3.3 169.0 2208 8E8.3 131.5 083
24.0 134.3 2.0 112.2 20.1 1326 027
25.0 172.8 40.6 105.3 27.0 1.34.1 1.77
28.0 271.4 1391 223.8 91.3 1307 1.63
27.0 °h6.5 124.2 187.8 55.5 1325 017
28.0 160 8 58.5 126.2 5.1 131.8 053
29.0 181.8 49.5 129.2 3.1 1311 1.23
30.0 118.2 14 .1 103.3 28.0 131.8 043
Mean Values 114.2 142.3 326 102.5 131.7 1.4
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C. SIMULATION RESULTS

Table 58: Barclays ple Slmulatlon Results

Barclays ple: Actual £ on 19/01/07 = 59.4

L4

N Error N Error N Errer

Simulation £, App.1 App. 1 F, App.2 App. 2 £, App.3 App. 3
1.0 53.8 4.4 5§33 3.9 592 0.2
2.0 60.1 0.7 57.3 21 57.2 2.2
3.0 G0.9 15 588 2.8 505 0.1
4.0 G62.8 3.4 60.5 1.1 595 0.1
5.0 61.8 2.4 58.3 1.1 564 3
6.0 64.5 5.2 G4.4 5.0 589 0.5
7.0 G51.6 2.2 58.2 1.2 57 .4 2
8.0 5E8.6 0.8 568.0 3.4 55.7 3.7
9.0 53.8 4.4 632 3.8 559 3.5
10.0 65.1 5.7 55.9 5.5 59.7 0.3
11.0 G68.7 9.3 V6.4 17.0 575 1.8
12.0 53.4 351 50.0 0.6 563 3.1
13.0 63.4 4.0 61.8 2.5 57.7 1.7
14.0 51.5 2.1 58.7 0.7 562 3.2
15.0 G2.5 3.2 50.5 1.1 571 2.3
16.0 G66.6 7.2 591 8.7 50.8 1.4
17.0 G61.2 1.8 57.8 1.8 598 0.4
18.0 G62.4 3.0 593 oA 578 1.5
19.0 63.7 4.3 507 0.3 505 0.2
200 61.7 2.3 B85 0.8 6503 0.8
21.0 Gd. 2 4.8 537 4.3 57 .8 1.8
22.0 50.8 0.4 57.3 =21 562 3.2
23.0 53.5 4.2 G20 2.8 546 4.8
24.0 G0.3 0.8 57.0 2.4 592 0.2
25.0 53.0 3.8 598 0.5 588 0.8
28.0 53.0 3.8 59.9 0.5 588 0.8
27.0 63.4 4.0 60.6 1.2 576 1.8
28.0 G1.2 1.8 581 1.3 580 0.4
29.0 563.8 4.4 627 3.3 554 4
30.0 G1.3 1.8 57.5 1.8 575 1.8
Mean Values 62.7 4.4 60.3 238 579 1.7
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C. SIMULATION RESULTS

Table 59: Nikkei Simulatlon Results

Nikkei: Actual £ on19/0107 = 17310.44

N Error N Error N Errer

Simulation £, App.1 App. 1 F, App.2 App. 2 £, App.3 App. 3
1.0 17430.5 1201 17430.0 119.8 178152 504.78
2.0 17430.8 120.4 174302 119.8 176766 26616
3.0 17430.2 119.8 14795 | 158E80.8 17661.0 350566
4.0 174301 119.7 17429.5 119.1 175216 21116
5.0 17430.8 1205 174303 118.9 175818 271.46
6.0 17429.7 119.3 17429.2 118.8 177322 421.78
7.0 17430.2 119.8 174258 4 118.0 178826 57216
8.0 17430.8 120.2 17429.8 119.4 176931 38288
9.0 17430.2 119.8 17429 4 118.0 173788 58.38
10.0 174301 119.7 17429.5 1191 179925 58208
11.0 17429.7 119.3 174291 118.7 176021 281.66
12.0 17430.2 351 174295 118.1 178858 585.34
13.0 17430.3 119.8 17429.7 118.3 175998 289.41
14.0 17429.7 119.3 174291 118.7 171851 125.34
15.0 17429.9 119.5 17429.4 119.0 17454 7 144.28
16.0 17429.9 119.5 17429.2 118.8 175195 20908
17.0 17430.8 120.2 17429.9 119.5 173193 568
18.0 17430.2 119.8 17429.5 119.1 177228 41246
19.0 17430.3 119.8 17429.6 118.2 174345 124.04
200 17430.4 120.0 17429.7 119.3 177954 484.98
21.0 17428.8 119.5 174283 118.8 177718 461.48
22.0 17424.2 113.8 17423.5 113.1 17557.0 246.58
23.0 17424.8 114.2 17423.8 113.5 175461 23568
24.0 17424.5 1141 17423.8 113.5 175214 21098
25.0 17424.6 114.2 17424.0 113.6 17605.5 20506
28.0 17424.8 114.4 17424.2 113.8 176252 314.78
27.0 17424.8 114.5 17424 4 114.0 178773 566.586
28.0 17424.5 1141 17424.0 113.6 176161 30568
29.0 17424.0 113.8 17423.3 112.9 17402.0 91.58
30.0 17425 4 115.0 17424.7 114.3 173886 58.18
Mean Values 17428.5 115.3 16394.6 642.8 17603.5 306.4
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Relative Errors



D. RELATIVE ERRORS

Table R1: FTSE Relatlve Errors

P, Actal| P, Appl | P, App.2 | P, App.3 [xg Appl | REaApp2 | REApp:
BP37.2 5216.9 82105 | 6344.3004 | 00032825 | 0.00428|  0.017178
6210.3 6211.0 G204.7 62821167 | 0.0001208 0.0008 0.011564
5204.5 B2ee.2 6216.9 5224.014 | 0.0028606 0.00184 0.003249
52157 5270.0 B263.7 | 8266.4448 | 0.0087436 0.00773 0.008555
B263.5 52455 5239.2 | 63327401 | 00028664 000387 |  0.0M055

5238 5236.6 52303 | 6165.6528 | 0.0003774 0.001346 0.012668
62301 B1G7.2 §160.9 | 62474782 |  0.010089 o011 | 0002789
6160.7 5202.6 6186.3 | 62969702 | 0.0068082 0.00578 0.022119
1061 52007 §104.4 | 5302384 | 0.0007492 0.00097 0.01715
6184 .2 5226.6 6220.3 | 62065747 | 0.0052373 0.00422 0.001993
52201 5283.5 62872 | 6252.8488 | 0.0118068 0.01079 0.005265

6287 5325.5 5319.2 653111207 | 0.0061299 0.00513 0.003837

5319 B317.4 53111 | 6240.7564 | 0.0002473 000125 | 0.010958
5310.8 B227.3 6221.0 | 6300.8653 0.0132412 0.01424 0.001584
5220.8 5247 4 Be411 | B108.000 | 0.0042518 000827 | 0018453
6240.9 62517 52454 | 6238.2508 | 0.001738 0.00073 | ©0.000424
£245.2 B106.5 §100.2 | 6216.8218 | 0.0077027 0.0088 | 0.004575

5190 5180.2 6183.9 | 6202.8368 | 3.744E-05 0.00088 0.00204
5183.7 52051 5188.8 5185.1363 | 0.0034857 0.00245 0.000232
65198.6 6210.4 62041 | 8235.0154 | 0.0019084 0.000B89 0.00652
B203.9 5253.9 52476 | B256.0012 | 0.008084 0.00705 | 0.008M3
6247.4 B5266.5 5260.2 | 62058487 | 0.0030616 | 0.00205 |  0.006851

68260 82345 B2P8.2 | 83927726 | DOMDBSS | 0.00508 | 0010008

6228 5199.0 §102.7 | 6165982 | 0.0048524 |  0.00566 | 0.009958
102.5 5162.9 §156.6 | 61270823 | 0.0047751 0.00570 | 0.010422
5166.4 5166.3 61680.0 | 5198.8048 0.0016118 0.000559 0.006888
5159.8 5158.9 61526 | §1098.0582 | 0.0001426 0.00116 0.008238
51624 5138.0 61317 6142.9817 | 0.0023372 0.00336 0.001531
5131.5 5086.8 50905 | 81306215 | 00065562 0.00588 0.000143
5080.3 5092.9 5086.6 | 6116.3008 | 0.0004299 00008 | 0.004269
B0BE.4 B056.0 B050.6 | 80854062 | 00048441 000586 | 0.000148
B050.4 5028.0 80217 | 6122254 | 00036096 0.00474 | 0.011878
6021.5 5055.3 60490 | g0246734 | 00056157 0.00457 0.000527
5048.8 50909 B0B4.6 | 80445044 | 00089823 | 0.00582 | 0.000695
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Table R2: S&F 500 Relatlve Exrors

D. RELATIVE ERRORS

™

P, Actal| P, Appl | P, App.2 | P, App.3 [xg Appl | REaApp2 | REApp:

14305 | 1447006 | 1430708 | 1411077 |  0.012031 00006 | 0012048
1426.37 | 1452.245 1434.978 1431.717 0.01314 0.008035 0.003749
143062 | 1453.523 1436.258 1450.866 0.016009 0.003541 0.014152
1431.8 | 1452362 14.35.087 1428.868 0.014283 0.002226 0.002417
143073 | 144544 | 1428177 | 1402513 ooMoPee | pomi7e4 | 0.019799
142382 | 1436468 1418207 1422368 0.008884 0.00324 0.001027
41485 | 1433727 | 1416488 | 1383975 0013342 | o0oom43| 00218020
11211 | 1434.458 1417186 1387108 0.015824 0.003602 0.017705
412.84 | 1431324 | 1414088 | 1424482 0013083 | 0.o00888 |  0.00804
1409.71 | 1439.953 1422696 1427625 0.021453 0.008212 0.012708
1416.34 | 1438.211 1420, 855 1423.666 0. 01401 0.001844 0.003755
1416.68 1438, 91 1422 656 1414.08.3 0.016455 0.004274 0.00177
11183 | 1446338 | 14po0ss | 1410612 | 0019760 | 0007604 | 0005421
1424 73 | 1448 447 1431184 1436118 0.016646 0.004537 0.0075584
1426.84 | 1438505 | 1421254 142886 | 0008176 | 0003015 | 0.001275
14160 | 1432384 | 1415114 | 1433358 o010o14 | pomest | oonsts
1410.76 | 1439002 | 14pp853 | 1420194 | 0020857 | 0.008431 | 0.006887
14163 | 1445131 1427.883 14.30.698 0.018918 0.006757 0.00g8742
1423.53 1447148 1425 603 144,245 0015582 0.004477 0.012445
142665 | 1444 078 1426.833 1423.681 0.012897 0.0008 0.0013M
142248 | 1448686 | 1431442 | 1430008 | 0018423 00083 | 0005201
1427.08 | 1447085 | 1420842 42557 | 0014011 | o.001928 | 0.001085
142540 | 1434803 | 1417562 | 14202280 | 0.008533 | 0.005582 | 0.009250
11321 | 1433152 | 1415911 | 1448127 | oo | oomett | 0024707
141156 | 143463 | 1417391 41354 | 0016344 | 0.004131 | 0.001403
141304 | 1431.429 1414 191 1403.834 0.013014 0.000814 0.008515
1400.84 | 1428.877 1411.64 1412.832 0.013503 0.001277 0.002122
140728 | 1434.4B86 1417.25 1402.668 0.018325 0.007078 0.0030741
1412.8 | 1436.344 1419 11 1380.788 0.016593 0.004385 0.009273
1414.75 | 1430703 1413.47 140588 | 0.0112s80 | ooo0ot2 | 0.008418
140912 | 1418.201 | 1401.050 1394.00 | 0008508 0.00572 | 0.010668
1396.71 | 142221 | 1404979 | 1300051 | 0018257 | 000502 | 0.004788
140063 | 1421.058 1403.828 1413.732 0.014585 0.002284 0.008354
1390.48 | 1408207 | 1301.088 | 1384.075 00083 | 0.008011 | 0.010365
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D. RELATIVE ERRORS

Table R3: GlaxoSmithkline plc Relatlve Errors

P, Acual| P, Appl | P, App2 | P, App 2 |gE Appl | REApp2 | RE App2
55905 | 20555806 | 16.77828 | 56588605 | 04717445 | prooie| oot
55.75 | 28.040854 | 1826581 | 55.622389 0.479086 0.70824 0.002289
b5 23 | 28366012 | 1558333 | be.o2c307 | 0.4865H832 071780 0.030714
54,54 2767107 | 14.80086 | 52881731 | 0.4944798 0.72852 0.030405
53.75 | 26.896127 | 1412838 | 53.251743 | 04908080 | 073715 | 000997
b3.07 | 26.56185 | 13 796541 283811 | 0.4986066 0.74004 0.008138
5273 | 26508243 | 13.74343 | 51.875408 | 04973214 | 073938 | 0018205
5267 | 26.501301 | 13.74006 53.48251 | 0.4968426 0.73911 0.015616
5265 | 27808358 | 15.04848 | 54586445 | 04710843 | 0.7w4p3| 0.038203
5398 28571416 | 1581601 | 55.364708 | 0.470507% 0.706B8%9 0.026032
54,72 27666474 | 14.91353 | 54.413714 | 0.4943982 0.72746 0.0055587
53.81 | 26621632 | 1387106 | 53578758 | 05052679 074222 0.004257
5276 | 26.408580 | 1365858 | 54.776284 | 0400408 | o07am2| 0038218
52 b4 26.511647 1376611 | 2638826 | 0.4954007 0.7378% 0.00761
5264 | 28236705 | 1340363 | 52505688 | 05015824 | 074386 | 0002172
5235 | 26.271763 | 13.53116 | 51645703 | 04082475 | 07157 | 0013642
5230 | 28.02882 | 1308868 | 51428347 | 05082101 | 074835 | 0018358
5214 26181878 | 13.44621 | 52083562 | 0.45878543 0.74211 0.001468
5220 | 26316836 | 1358373 | 52017038 | 0.4867119 0.74022 0.00522
b242 | 26191984 | 1348126 | 52273381 | 0.5003435 0.7432 0.002797
5220 | 25837051 | 1310878 | 52.0680689 | 05058802 | 074031 | 0.004385
51.93 | 26.672100 | 13.04631 | 53413886 | 0.4883834 | 073144 | 0028575
5278 | 26807167 | 1410383 | 53719172 | 04015245 | 073288 0.01818
52.01 | 26.9920225 | 14.20135 50.7198 | 04911694 | 073150 |  0.041395

53 | pe.as7082 | 1363888 | 51.683563 | 05026028 | 074286 | 0024838
5243 26.45234 | 13.736M 51.375004 | 04854732 0.738 g.020m12
5252 | 26.487308 | 13.77393 | 52.7716856 | 04956703 0.73774 0.004795
E265h | 26,3624k | 13.641456 | 53.213860 | 0.4985261 0.74041 0.012633
52.41 26.767513 | 1406895 | 51.943482 | 04892671 073175 0.008901
5282 | 27089571 | 1457651 | 52.075393 | 04834805 | 072403 | 0014008
5333 | 27887820 | 14.08403 | 51075545 | 04808245 | 071903 | 0.040074
5373 | 27002687 | 14.39156 | 52.331786 | n4o57624 | 073215 | 0.0P8023
5313 27217744 | 1451908 | 51.928236 | 04877142 0.72673 0.022819
5325 | 25830802 | 1313861 | 50517786 | 0514877 0.7533 0.05131
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D. RELATIVE ERRORS

Table R4; Microsoft Corporatlon Relative Errors

P, Acual| P, Appl | P, App2 | P, App 2 |gE Appl | REApp2 | RE App2

3111 | 36.323814 | 3120343 | 30408448 | 01875884 00050 | 0092815
| 36422602 | 31.38337 32.44348 01748227 0.01269 0.045564
| 35.481581 | 3145332 | 32021758 01730415 0.01136 0.028634
116 | 36630679 | 3160326 | 31.866176 | 01723544 0.01102 0.022663
3121 | 38019567 | 30,9932 | 28854808 | 01541034 | 0.00805 | 0.075463
30,7 | 34.678565 | 286466315 32.58518 | 01383666 0.024.33 0.061407
2065 | 35.9277543 | 3025300 | 205022508 | 018093979 0.02 | 0.004622
2995 | 35.246531 | 3022304 | 28.681981 0176453 0.00878 0.042658
20903 | 34.955519 | 2003205 | 29.784408 | 01870091 1E-04 | 0.004861
2964 | 35124507 | 3010293 | 30.850276 | 0.1850374 0.01562 0.044206
2081 | 35173485 | 3015287 | 30.773343 | 01788227 0.0115 0.032316
29.86 | 35172483 | 3015281 | 30.084067 0177913 0.00881 0.007504
2086 | 35001472 | 30.97276 | 20293358 | o1stse7o | oo3e2 |  0.021321
29.98 36.33048 30,3127 | 29310814 | 01784676 0.0111 0.022321
30,02 | 35200448 | 3028285 | 27370455 | 01758843 | 0.00875 | 0.088250
2090 | 34948436 | 2093250 | 30.692897 | 01653383 | 000191 | 0021005
2064 | 35287424 | 3027954 | 20950415 | 01905330 | poe1za|  oo1077s
2998 | 35.306412 | 30.38248 | 3.0033AH 0.1806675 0.01342 0.034135
30.08 352854 | 30.28242 | 27558435 | 0.1720844 0.00639 0.084133
2099 | 35194388 | 3018237 | 20369022 | 01736375 0.00641 0.020706
2080 | 35493376 | 3048231 | 28.635819 | 018M686 | 001982 0.04196
3018 | 35372364 | 3036206 | 26064000 | 01716583 | 0.00571 | 0070388
3007 | 34.851353 | 208422 | 20335848 | 01500074 | 000758 | 0024415
2955 | 34730341 | Po7ee14 | 28875986 | 01753076 | 000583 | 0.02081
2043 | 34830320 | 2083200 | 304105084 | 01838082 | 001386 | 0.0P5908
2954 | 34.8098317 | 2069203 | 26.283603 01746214 0.00515 0.042529
204 | 34147305 2014195 | 28.549264 0161473 0.00878 0.026937
28.85 | 34286283 | 28.2B192 | 2B.087932 0188433 0.01487 0.028068
28.99 | 34.425281 | 2942187 | 28.066381 01874861 0.0149 0.032205
2913 | 34624260 | 2062181 | 28.326024 | 01888121 | o0o1s8s |  0.097503
2033 | 34.413257 | 2041175 | 20508037 | 01733126 | 000279 | 0.008101
2912 | 34650245 | 206517 | 30172613 | o01seoe1 | ooises| 0036147
2936 | 34.861234 | 20.806164 28 5641147 01873717 0.1709 0.009576
2057 | 34.680222 | 2088150 | 30306004 | 0178178 | 000377 | 004904
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D. RELATIVE ERRORS

Table R5: General Motors Relatlve Errors

P, Acual| P, Appl | P, App2 | P, App 2 |gE Appl | REApp2 | RE App2

3155 | -01.47079| 1123139 | 31416308 | 3.8000305 | 255087 | 0.004235
30.8 -81.38 | M23767 | 31.381662 | 3.9672079 2.64859 0.019216
30.87 -81.35822 | 112.3485 | 32148815 | 3.9607782 2.63944 0041451
30.85 -01.48844 | 112.2423 | 30406611 | 3.9655898 2.63832 0.014.372
3075 | -91.38766 | 112.3451 | 30684878 | 30713050 26535 | 0.002118
30.88 -81.60688 | 112.0879 | 30639633 | 3.96B466h0 2.63214 0.007141
3061 | -91.43800 | 112.2407 | 31184189 | 3.9871314 26688 | 0.018758
3077 -81.61531 12.0435 | 31.343239 | 3.8774232 2.64132 0.01B863
3058 | -01.94453 | 111.8984 | Posso0se | 40088883 | 265050 | 0.080995
3024 | -9253375 | 11.0892 | 30259485 | 4.0589754 2.67358 0.000644
29.64 -82 71296 110,682 | 20207333 | 41279678 274128 0.014587
29.45 -81.4.3218 1121548 | 31.2667356 | 4.1046551 2.80831 0.061349
3072 | -o15214 | 1120476 | 3p023868 | 30702122 | 2e4738 |  0.042444
3062 -81.54062 20104 | 30628554 | 3.8885605 2.65808 0.01011
3050 | -02.34084 | 1111832 | 20078068 | 4.0189551 | 263483 | 0.040482
2077 | -op.go05 | 110.826 | 28400872 | 41135053 | 27ee7a|  0.045990
2042 | -0p.54827 | 110.9488 | 20409830 | 41457604 27712 | 0.000345
2955 -82.60749 110.8747 | 29.797662 41305411 2.756349 0.008381
29.58 -92. 78671 110.6645 | 28604752 | 41371436 2.74119 0.000837
2028 | -92.76R82 | 10.6773 20 77867 | 41682351 2.77986 0.01703
203 | -02.795% | 1106301 | 2060879 | 41670607 | 277577 | 0.010539
2025 | -9227436| 1111320 | 25.049847 | 41535008 | 279812 0.0108
2077 | -90.58358 | 110.8057 | 20.345401 | 41000623 | 272206 | 0.014283
2945 | -9218270 | 111.2085 | 20649087 | 41204887 | 277618 | 0006701
2086 | -02.08201 | 113213 | po03044 | anse1i7 | 27esit | ooesom
29.98 -92.42123 | 110.9142 | 20186677 | 4.0827629 2.8986 0.027498
2958 | -82.84045 110,377 | 26.625286 4142003 273147 0.032276
2006 | -82.60857 | 10.6858 | 28.879547 | 41878403 2.81032 0.005864
29.37 -81.82888 | 111.4526 134248 | 41266218 2. 78478 0.067158
3014 | -021481| 1111154 | 30367734 | 4.0573358 | 268684 | 0.007556
po g1 | -9205732 | 110.0882 | 28204502 | 4.0048447 | 2.72310| 0.050835
2060 | -92.70854 | 110521 | 28.768204 | 412024835 27295 | 0.031044
2923 | -9242575 | 107838 | 29.76578082 | 41620169 278007 0.01g402
205 | -01.94497 | 111.24868 | 30.077074 | 41167787 | 277107 | 0019582
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D. RELATIVE ERRORS

Table R6: Sony Corporatlon Relatlve Errors

P, Acual| P, Appl | P, App2 | P, App 2 |gE Appl | REApp2 | RE App2
47.06 35.3 405 | 45542482 | 00500008 | 014097 | 0.032248
46.36 36.5 416 | 48.570039 | 0.2132745 010181 0.047671
4754 3566 411 47 27 7h81 0.244122 013545 0.00662

47 36.6 418 | 48.230672 | 0.2208301 011102 0.026182
4768 348 308 | 44415831 | 02745778 | 016626 | 008845
4566 34.7 39.9 | 46.316308 | 0.2384308 012631 0.014555
45.78 35.3 405 | 47302524 | 0290073 | 011523 | 0.033257

46.4 33.8 3849 44 68796 | 0.2725502 01613 0.036857
44.81 33.7 38.9 | 44.830315 0.24602 013174 | 0001569
44.8 32.7 379 | 44.042222 | 0.2690321 015384 0.018815
43.8 3.8 3.0 | 43781616 | 0.2726208 015482 0.00042
42 91 3.8 36.9 | 43.214275 | 0.2683556 013913 0.007081
4283 321 373 | 4439234 | 02497572 | 012033 0036478
4318 32.3 376 | 44 263007 | 0.251B5H86 013243 0.02485
4335 31.9 37.0 | 43008052 | 0.2648900 | 014506 | 0.005858
42.91 31.6 368 | 42117549 | 0pepevop | 014254 | 0018488
4268 31.9 371 | 43.384408 | 0.9505707 01318 | 0.018038
4294 32.0 371 | 44018935 | 0.2658561 013584 0.025127

43 3.8 370 | 44268548 | 0.2584425 013961 0.028501
4288 321 373 4271944 | 02510303 0130848 0.003744
4315 30.4 375 | 44507862 | 0.2408485 | 013027 | 0.035756
4341 31.8 36.0 | 43878438 | 02678015 | 014005 |  0.010745
4282 30.7 350 | 43113577 | 0.08095485 | 016220 | 0.008858
41.75 30.0 351 | 40457128 | 02818395 | 015852 | 0.030087
41.01 P9 4 345 | 40700088 | 00834683 | 015705 |  0.00685
40.41 291 34.2 | 37940068 0.280453 0153049 0.061122

401 28.9 34.0 | 39462658 | 02798318 015151 0.015684
35.8 28.7 339 | 380609636 | 02801858 015124 0.03234
38.74 28.6 33.7 | A41.708055 | 02805125 015107 0.048545
39.61 P8.8 330 | 38607965 | 02738127 | 014307 | 0.0P3005
30.78 P8.7 338 | 40019213 | 02791321 014986 | 0008013
30,60 P8.4 335 | 40.783088 | 0.0845057 | 015406 | 0.027541
38.41 28.5 336 | 38.096245 0.275838 014564 0.033336
30,51 ?8.3 334 | 40043841 | 00839387 | 018385 | 0.013512
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D. RELATIVE ERRORS

Table R7: Tovota Motor Corporatlon Relatlve Exrors

P, Acual| P, Appl | P, App2 | P, App 2 |gE Appl | REApp2 | RE App2
47.06 35.3 405 | 45542482 | 00500008 | 014097 | 0.032248
46.36 36.5 416 | 48.570039 | 0.2132745 010181 0.047671
4754 3566 411 47 27 7h81 0.244122 013545 0.00662

47 36.6 418 | 48.230672 | 0.2208301 011102 0.026182
4768 348 308 | 44415831 | 02745778 | 016626 | 008845
4566 34.7 39.9 | 46.316308 | 0.2384308 012631 0.014555
45.78 35.3 405 | 47302524 | 0290073 | 011523 | 0.033257

46.4 33.8 3849 44 68796 | 0.2725502 01613 0.036857
44.81 33.7 38.9 | 44.830315 0.24602 013174 | 0001569
44.8 32.7 379 | 44.042222 | 0.2690321 015384 0.018815
43.8 3.8 3.0 | 43781616 | 0.2726208 015482 0.00042
42 91 3.8 36.9 | 43.214275 | 0.2683556 013913 0.007081
4283 321 373 | 4439234 | 02497572 | 012033 0036478
4318 32.3 376 | 44 263007 | 0.251B5H86 013243 0.02485
4335 31.9 37.0 | 43008052 | 0.2648900 | 014506 | 0.005858
42.91 31.6 368 | 42117549 | 0pepevop | 014254 | 0018488
4268 31.9 371 | 43.384408 | 0.9505707 01318 | 0.018038
4294 32.0 371 | 44018935 | 0.2658561 013584 0.025127

43 3.8 370 | 44268548 | 0.2584425 013961 0.028501
4288 321 373 4271944 | 02510303 0130848 0.003744
4315 30.4 375 | 44507862 | 0.2408485 | 013027 | 0.035756
4341 31.8 36.0 | 43878438 | 02678015 | 014005 |  0.010745
4282 30.7 350 | 43113577 | 0.08095485 | 016220 | 0.008858
41.75 30.0 351 | 40457128 | 02818395 | 015852 | 0.030087
41.01 P9 4 345 | 40700088 | 00834683 | 015705 |  0.00685
40.41 291 34.2 | 37940068 0.280453 0153049 0.061122

401 28.9 34.0 | 39462658 | 02798318 015151 0.015684
35.8 28.7 339 | 380609636 | 02801858 015124 0.03234
38.74 28.6 33.7 | A41.708055 | 02805125 015107 0.048545
39.61 P8.8 330 | 38607965 | 02738127 | 014307 | 0.0P3005
30.78 P8.7 338 | 40019213 | 02791321 014986 | 0008013
30,60 P8.4 335 | 40.783088 | 0.0845057 | 015406 | 0.027541
38.41 28.5 336 | 38.096245 0.275838 014564 0.033336
30,51 ?8.3 334 | 40043841 | 00839387 | 018385 | 0.013512
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D. RELATIVE ERRORS

Table RS: Barclays plc Relatlve Exrors

P, Acual| P, Appl | P, App2 | P, App 2 |gE Appl | REApp2 | RE App2
504 | 57688885 | 5125510 | 55.088004 | 01385435 | 003123 ]| 0.040589
5914 G797722 | 6154478 | 58.450572 | (01484288 0.04086 0.011505
b0.43 | 68.276605 | 61.84436 hB.o2872 | 01488398 0.04083 0.008418
5073 | 658533881 5210386 | 5B.773338 | 01473848 0.03574 0.018016
5000 | 68152227 | 61.72354 | 57651249 | 01380508 o.o28a | 0038986
5o 51 57400682 | 651.08313 | Bh.H20hE6 0132202 0.024.38 0.05B8452
58.95 | 68.358808 | 6183272 | 50.957847 | 01506081 0.0508 | 0.017007
5982 | 67487233 | 61.06231 | 60.681933 012e1717 0.02077 0.014408
58.95 | 68785560 | 60.36189 | 54.232288 | 01320180 | 0.02305 | 0.080000
58.25 | 6B8.043904 | 61.62148 58.73474 01661357 0.05788 0.00B322
58.51 6706224 | 61.5007 | 59.758512 | 01420306 0.03413 0.004183
5043 | 66.670575 | 8025066 | 5O 234389 01218337 0.01.381 0.003291
5814 | 66.008011 | 8040025 | 58.9388 | 01508241 | 004042 | 0.013730
bB8.3B | 66487245 | 80.06883 | BRLIF741 01388703 0.02885 0.048158
5706 | 68145582 | 50.72042 | 57848800 | 0412081 | 003053 000018
57.692 | 65.823017 | 59.40001 | 57070813 | 0143707 | oo3105| 0009375
573 | 85800953 | 504086 | 57.003477 | 01487304 00388 | 0005175
573 | BB.370588 | BB.95B19 BB 37655 0140848 0.028584 0.016116
56.85 | 65518924 | 5810777 | 52616876 | 01524877 0.03871 0.07446

b7 | B6H147258 | L. 73736 | Bh.eh2243 | 01420344 0.03048 0.023645
56.63 | 65.605505 | 5028695 | 58309366 | 01600847 | 0.04502 | 0.0P0655
5718 | 6574393 | 5933654 | 55.918414 | 01407714 | 003771 | 0.022083
57293 | 656220965 | 50.21613 | 57731001 | 0146841 00347 | 0008754
5711 | 85120601 | 5871572 | 55.095023 | 01400662 | 0.0es12 ]| 0.038482
56.61 | 655780537 | 501753 | 57200616 | 01584338 | 004532 | 0010488
5707 | 8B8.757272 | 60.35489 59.08003 01657437 0.05756 0.03k22
58.25 | 64205608 | 5769448 | 58.629908 | 01037673 0.0061 0.006524
B 70 | 62.843843 | b6 44407 | B3.006720 | 01264374 0.0M72 0.032161
b4.34 | 62482270 | 56.08366 | 52376309 | 01488355 0.03208 0.038137
53.98 | 62.420614 | 56.02324 | 53572086 | 01583656 | 0.03785 | 0.007857
5302 | 62.38805 | 5500283 | 550027143 | 01570851 | 0.03844 | 0.020533
5380 | 60.557285 | 5616242 | 56.28486 | 01608320 | 004217 | 004444
54.06 | 62535621 5614201 | 52.747384 01567817 0.03851 0.024281
54.04 | 1643056 | 552516 | 56746861 | 01407008 | ocoepaz| 005000
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D. RELATIVE ERRORS

Table R9: Nlkkel Relatlve Errors

™

™

E

F, Actal | F Appl | F App2 | F App 3 |REappl |REApp2 |REApp3
17310.44 173713 | 173708 17303 | 0.008515 | 0003475 | 0.004759
17370.93 17261.7 17261.0 1684062 0.006287 | 0.006327 0.024772
17261.35 17202.8 172021 1731301 0.003351 0.003431 0.002583
17202.48 17210.3 17200.6 17367.62 0.000455 0.000414 0.009601
17900.92 170574 | 170567 16964.9 | 0008884 | 0o0BOD4 | 0.014237
17057 01 16838.6 168378 16883.66 0.012808 | 0.01284% 0.008583
1583817 16042.8 | 160421 | 1671731 | o0oose1e | 000817 | 0.007178
16842 .4 172381 172374 17281.49 0.017455 0.01714 0.020604
17937.77 17002.0 | 170913 | 1714461 | 0.008450 | 0.008490 | 0.005404
17091.59 17354.0 17353.3 1688211 0.015355 0015315 0.0118A
17353.67 17226.2 17225.5 17505.57 0.007346 | 0.007386 0.008753
17225.83 17226.2 17224.5 17506.08 3.82E-05 7BAE-05 0.021454
17224 81 17240.0 | 172483 | 1751545 | 0.001404 | 0001384 | 0.016873
1724863 17168.6 17168.9 17222.23 0.004585 | 0.0045625 0.001531
17169.19 17003.3 | 170026 | 1743095 | 0.004423 | 0.004483 0.01577
1709289 1710653 | 171046 | 1757422 | o0.oo07e7 | 0000887 | 0028159
17104.96 17048.2 | 170475 | 1893168 | 0003319 | 0008350 |  0.010131
17047.83 17011.4 17010.7 16363.69 0.002137 | 0.002177 0.04013
17011.04 167772 16776.5 167847 0.013744 0.013785 0.012718
16776.88 168625 16961.8 16894 05 0.011062 0.011021 0.008984
15962 11 180147 | 169140 | 1682303 | o0.002797 | nooesss| 0.0029m
16014.31 16820.6 | 168280 | 18586.33 0.00501 | 0.005051 | 0.019301
15820.2 186033 | 186026 | 18802.03| 0008076 | 0.0081M7 | 0013498
16692.93 166381 | 188375 | 18160.81| 0.003282 | 0.003304 | 0.031877
1663778 165284 | 165277 | 16589.31 | 0008577 | 0.008810 ] 0002913
18527.998 16418.2 168417.5 16133.46 0.006644 | 0006586 0.023871
16417.82 16473.7 16473.0 16633, 84 0.003405 | 0.003383 0.013158
1647338 16371.6 18371.0 16375.68 0.00617% | 0.006217 0.005535
18371.28 162661 18285.4 16131.54 0.008423 | 0.0084886 0.014544
16265.76 16304.0 | 183033 | 16606.72 | 0.002348 | 0.002305 ] 0.0P0062
16303.58 183201 | 1630915 | 1828511 | O0.00M38 | 0.001005| 000238
16321.78 15274.7 | 16274.0 | 1653504 | 0.0oress | pooeopy | 0013121
16274.33 16076.6 16075.9 16223.38 0.012152 0.012185 0.00313

16075.2 158556 | 158540 | 1509763 | 0013721 | 0.013784 | 0000042
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