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Abstract

Determination of values of stocks and indices is very challenging and a very important

aspect in finance. Knowing the value of a stock price, for instance, can be very vital in

pricing various financial derivatives such as options. On the other hand, indices are useful

tools for tracking stock market trends. By studying the pattern of index values over time,

investors might gain insight that would help them make better investment decisions.

Various attempts have been made to predict future stock prices and index values but these

have yielded mixed results due to the stochastic nature of financial markets. Despite the

fact that there has been growing academic interest in the stock market, it still remains

elusive as to what the next day’s price of a stock, in particular, and value of an index, in

general, will be even when the prices of the present and previous days are known. One

of the popular approaches of pricing options, for instance, has been through the use of

the Black-Scholes model. This and various other approaches have placed normality at the

centre of the stochastic modeling. In this thesis, a statistical analysis on different indices

and stocks traded on the world’s major financial markets is performed and demonstrates,

through simulation, that Markov chains and the double gamma distribution play a central

role in the stochastic behaviour of prices on the stock market.
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CHAPTER 1

Introduction

1.1. The Behaviour of Stock Prices

One of today’s most vibrant financial institutions is probably the stock market. Over

the last few decades, what was once an exclusive club of the rich has swiftly turned into

every investor’s domain for growing wealth. The growing interest and advances in trading

technology have opened up markets such that today nearly anybody can own stocks. It

is no wonder, therefore, that major media publications dedicate entire pages or airtime

to report news on how major companies perform on the stock market. It has become

an institution of great interest to investors as well as the public at large (Granger and

Morgenstern (1970)).

While there has been growing interest and popularity in the stock market, it remains elusive

what the next day’s price of a stock will be even when the previous or present day’s price

is known. The determination of a stock price is a very important aspect in finance. The

most basic motivation for predicting stock prices is financial gain. Every stakeholder in

the world of finance seeks a position of advantage over competitors. It is not surprising

therefore that nearly all investors continuously look for opportunities that will earn them

high returns.

Since the price of derivatives is closely related to that of the underlying asset, the value of

the underlying asset such as a stock price is used in pricing derivatives (Hull (1989)). A

very popular and typical example is the pricing of options using the Black-Scholes model

and binomial option pricing model. Both involve the price of stock in their formulae as

shall be reviewed later. Other examples include swaps and futures/forwards (Hull (1989),

Joshi (2004) and Neftci(1996)).

Many attempts have been made to predict future stock prices but have failed due to

the unpredictable nature of financial markets. Fundamental and technical analyses of

predicting stock prices have used statistical modelling techniques. None of the techniques,

1



1.2. FINANCIAL MARKETS 2

however, has proven to predict stock prices consistently thereby casting a shadow on the

usefulness of many of the approaches.

Today most models do not focus on daily predictions of stock prices but other attributes.

For instance, the Log-Asymmetric Conditional Duration (Log-ACD) model of Bauwens

and Giot assists in finding the probability of a price increase (or decrease) at the time of

the last quotes announcement given the past information (Chou (2001)).

In 1900, Louis Bachelier used the Brownian motion concept to model prices of stocks and

commodities at the Paris Bourse. However the Brownian motion modelling has some flaws

when used to model stock prices since, firstly, as the stock price is assumed to be a normal

random variable, it can theoretically become negative. Secondly, stock prices often change

in proportion to their size but Brownian modelling does not take this property into account

(Ross (1996)).

In the next sections, we review basic definitions and concepts that are central to the study of

finance and financial mathematics. The work in this thesis embraces three major disciplines

which are finance, financial mathematics and stochastic processes. All the concepts and

definitions reviewed in this chapter can be found in standard texts in financial mathematics

and finance (see Hull (1989), Joshi (2004), Wilmott (1995), Ross (1999) and Neftci(1996)).

1.2. Financial Markets

As stocks are traded on the world’s financial markets, we will highlight important aspects

of this crucial medium in the world of finance. As commonly used in economics, we

define a financial market as a setup which allows people to trade money for securities or

commodities such as gold or other precious metals. Any commodity market, in general,

may be viewed as a financial market provided the traders’ objective is not immediate

consumption of the commodity but as a means of controlling consumption over time. The

market provides a medium through which funds are transferred from those who have excess

funds (savers, lenders) to those who have a shortage (borrowers). Financial markets are

classified according to the type of commodity being traded.

1.2.1. Capital Markets. We use the term long-term capital to refer to capital that

is invested or lent and borrowed for long periods of time spanning over five years in

most developed economies. Capital markets are markets for long-term capital and mainly
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consists of stock markets and bond markets. Stock markets provide financing through the

issuance of shares or common stock. On the other hand, bond markets provide financing

through the issuance of bonds. These are dealt with separately below.

1.2.1.1. Stock Market. In these markets the most commonly traded asset is the share

or stock in a company. A share in a company is a fraction of ownership in a particular

company and thus holders of shares own a fraction of a company (see Joshi (2004)). The

markets that facilitate the trading of shares are called stock or equity markets. As shares

are bought publicly on the equity market, companies traded on the stock market are public

limited companies (plc). While a shareholder owns part of a company, his or her liabilities

are limited to the amount invested, that is, the shareholder has no liability for its debts in

case it goes bankrupt. Further, the shareholder may make money in two ways. Firstly, if

the share price goes up, the shareholder may decide to sell the shares at a profit. Secondly,

the company pays dividends to shareholders, dispensing the profits made by the company

during a specified period.

The stock market is used to describe the totality of all stocks excluding bonds, securities

and derivatives. It is one of the most crucial areas of a market economy as it is an avenue

through which most companies raise their capital while providing income to investors. A

stock market is, however, different from a Stock Exchange. The latter involves bringing

buyers and sellers of stocks and securities together. Thus a stock exchange is a marketplace

where buyers and sellers meet and agree on a price. The oldest stock exchange is the New

York Stock Exchange having been formed in 1792 (Granger and Morgenstern (1970)).

Since then there has been a boom of stock exchanges with the most popular ones being the

European stock exchanges like the London Stock Exchange, the Tokyo Stock Exchange in

Asia and the Johannesburg Stock Exchange in Africa. The Malawi Stock Exchange was

inaugurated in 1995 but opened for business for the first time in November 1996 when it

first listed National Insurance Company Limited (NICO).

A stock market index , on the other hand, is a listing of stock and a statistical measure that

reflects the performance of a specific “basket” or portfolio of stocks considered to represent

a particular market or sector of the economy (Hull (1989)). Indices (or indexes) often serve

as barometers against which financial or economic performance is measured. For example,

the S&P 500 Composite Stock Price Index is an index of 500 stocks representing major

companies in leading industries within the U.S. economy. Stocks in the index are chosen
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for market size, liquidity, and industry group representation. We describe other major

indices and stocks studied in this thesis in subsection 3.1.1.

1.2.1.2. Bond Market. In general terms, a bond is a contract through which an investor

loans money to an entity (such as a company or government) that borrows the funds for

a defined period of time at a specified interest rate. The original sum of money borrowed,

called principal , is returned to the holder or investor at the expiration of a preagreed

period, called the maturity date. The holder receives interest payments, called coupons ,

as compensation for the investor’s release of money that is borrowed from the public by

government or corporate institutions (see Joshi (2004)). If there is no coupon the bond is

known as a zero-coupon bond . These instruments are traded in bond markets.

1.2.2. Money Markets. The money market is the financial market whose aim is to

facilitate the lending and borrowing of money on a short-term basis. Money markets are

operated mainly by banks and other financial institutions. These provide short term debt

financing and investment. Money market instruments are a form of short-term debts that

mature in less than one year. Examples of instruments that are traded on money markets

include drafts or bills of exchange, treasury bills, short-term loans also technically called

repurchase agreements and certificates of deposits . Certificates of deposits are issued by

a bank acknowledging that a certain amount of money has been deposited with it for a

certain period of time.

While money markets largely involve borrowing and lending by banks, other large

companies and nationalised industries as well as the government are also involved in

money market operations. Due to the liberalisation of building societies in most developed

economies, building societies have lately become major participants in the money market

as well. In Malawi, what was formerly called New Building Society has now turned into a

fully fledged commercial bank.

1.2.3. Derivatives Markets. A financial derivative, also called contingent claim is

a security whose value depends on the values of other underlying variables or assets. An

example of an underlying asset is the value of stock while some examples of financial

derivatives are highlighted below. The derivatives markets are markets for financial

derivatives. Financial derivatives provide instruments for the management of financial

risk (Hull (1989)).
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Three common examples of derivatives are: futures and forwards, swaps and options.

Futures and forwards are contracts to buy or sell an asset at a specified price at a known

future date. On the other hand, swaps are agreements where parties agree to exchange

cash flows involving various currencies, interest rates and other financial assets at a future

agreed date. A definition of options and a thorough treatment of the theory of options can

be found in section (1.4). Financial markets on which options and futures/forwards are

traded are called options markets and forwards/futures markets respectively.

1.2.4. Insurance Markets. Insurance is a form of risk management that is primarily

used to hedge against the risk of potential financial or material loss. Insurance is defined as

the equitable transfer of the risk of a potential loss, from one entity to another, in exchange

for a premium and duty of care. The insurance markets facilitate the redistribution of

various risks through the trading of various insurance products normally referred to as

policies.

There are many types of insurance depending on the type of risk they are supposed to

hedge. Common insurance types include motor or car insurance which covers claims

against the driver and loss of or damage to the vehicle itself; property insurance which

provides protection against risks to property, such as fire, theft or weather damage; and

financial loss insurance which protects individuals and companies against various financial

risks such as protection from loss of sales if a fire in a factory prevented a company from

carrying out its business for a time. Other well known insurance types are life insurance,

health insurance, casualty insurance, travel insurance, professional indemnity insurance

and marine insurance. The most common and well known insurance in Malawi is the car

insurance since it is a legal requirement that all motor vehicles must be insured before they

are certified roadworthy.

1.2.5. Foreign Exchange Markets. This is probably the largest financial market in

terms of trading volume and the number of participants involved in the market. Foreign

exchange markets are found wherever one currency is traded for another. In Malawi, in

addition to the regular commercial banks, all major towns have foreign exchange markets

commonly known as forex bureaus. The primary role of foreign exchange markets is the

facilitation of the trading of foreign exchange.

Brief summaries of financial markets can be found in Wilmott et al (1995) and Joshi (2004).
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The main question for investors and other market participants is what drives prices in any

financial market. The answer to such a question is not obvious, however, an attempt to

answer it may be provided by the Efficient Market Hypothesis which is reviewed in the

next section.

1.3. Efficient Market Hypothesis

The Efficient Market Hypothesis (EMH) is a concept that claims that the present price of

an asset incorporates and reflects all the information presently available including historical

information (see Ross (1999), Joshi (2004) and Cockraine (2001)). As a consequence old

information cannot be used to foretell future price movements. Since the acquisition of new

information is highly competitive, it is not easy to make quick profits (Cockraine (2001)).

However critics of the concept claim that past price movements reflect information that

has not been universally recognized but will affect future prices. The general belief of the

critics is that there is no prior reason why future price movements should be independent

of past movements (see Ross (1999)).

There are three forms of the efficient market hypothesis and these are Weak form of market

efficiency, Semi-strong form of market efficiency and Strong form of market efficiency.

These are reviewed in the next subsection.

1.3.1. Weak form of market efficiency. The “weak” form states that all past

market prices and data are fully reflected in securities prices. Any information contained

in previous prices has been analysed and acted on by market forces and consequently

securities such as stocks are neither under-valued nor over-valued. Proponents of weak

form of market efficiency claim that a study and analysis of trends in historical prices,

known as technical analysis , cannot help in the determination of future market prices.

1.3.2. Semi-strong form of market efficiency. The “semi-strong” form asserts

that all publicly available information is fully reflected in securities prices. In a “semi-

strong” market, current prices efficiently adjust to information that is publicly available.

Since all publicly available information has been thoroughly analysed, assessed and acted

upon by a large number of market players, both fundamental and technical analyses are

ineffective. Fundamental analysis is the analysis of financial information such as company

earnings and asset values to help investors select undervalued stocks (see Malkiel (2003)).
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In addition, fundamental analysis involves studying the prospects for a company’s business

(Brealey (1983)).

1.3.3. Strong form of market efficiency. The “strong” form asserts that all

information is fully reflected in asset prices. In a “strong form” efficient market, any

attempt to make profitable use of monopolistic access to information would be fruitless

since any such information has already been incorporated into the market price of the

asset. Thus no one even with insider information could have any advantage over other

investors.

It is a difficult task to predict values of asset prices. The historical prices are, however,

there as a financial time series (Wilmott etal (1995)). The financial time series can be

examined to suggest the likely jumps in asset prices, their mean and variance, and the

likely distribution of assets. These qualities may be determined by a statistical analysis of

historical data. Malkiel (2003) presents the arguments for and against the efficient market

hypothesis but concludes that stock markets are far more efficient and far less predictable

than what some recent academic papers suggest. On the other hand, while prices on

average adjust quickly to firm-specific information a common finding in event studies is

that the dispersion of returns increases around information events. Previous work done by

various researchers shows that during mergers, stock prices of acquiring firms do not often

react to merger announcements but later drift slowly down. Other studies suggest that

stock prices do not react swiftly to specific information (see Fama (1991)).

Samuelson (1973) suggests that expected future price must be approximately equal to

present price otherwise the present price would be different from what it is. If there were

profits to be made, which all market participants could recognise, this would be acted upon

quickly thereby raising or lowering the present price. As market participants’ expectations

of the future are different, they guess differently and this turns out to be the major reason

why there are transactions in the marketplace in which one individual is buying and another

is selling (Samuelson (1973)).

The one major aspect of asset prices that can be discerned from the last two sections is

that asset prices are generally difficult to predict. The uncertainty in future asset prices

poses a big problem for investors as any investment decision will harbour some level of
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risk. To manage risk, some investors use options (see Joshi (2004)). In the next section,

we hightlight the main aspects of the theory of options.

1.4. The Theory of Options

In this section we look at the theory of options. The major motivation for reviewing options

is that the values of some financial instruments, such as stock, go up and down. Due to

their erratic behaviour stocks may be viewed as assets that harbour risk. In the world of

finance, derivative products, such as options, are financial instruments that are used to

hedge against risk. However, the values of all financial derivatives are contingent on the

value of the underlying asset, in our case, stock. It is not surprising therefore that major

option pricing models involve the price of stock in their formulae. Hence as the central

theme of this thesis is stock pricing, it is imperative that we briefly review the theory of

options.

Financial markets, as avenues where buyers and sellers transact business, have become

more sophisticated as more complex transactions are being introduced (Wilmott et al

(1995)). However, all investment decisions harbour risk and hence require an assessment

and diversification of risk (see Joshi (2004)). In order to curtail risk, various financial

instruments are used. These include swaps, futures and forwards and options. A thorough

treatment of swaps and futures and forwards can be found in Hull (1989) and Neftci (1996).

Our review of options is based on Joshi (2004), Wilmott et al (1995) and Cox et al (1979).

1.4.1. The language of options. An option is a contract that gives the holder the

right, but not the obligation, to buy or sell some quantity of an underlying asset at a

prearranged price on or before a certain date. In our case the underlying asset is stock.

The price of an option is called the premium. The act of using the option is referred to

as exercising the option. The prearranged price is called the strike or exercise price while

the given date is termed the expiration or exercise or maturity date.

There are two basic types of options: call options and put options. A call option gives the

holder the right to buy while a put option gives the holder the right to sell some quantity of

the underlying asset at the prearranged price on or before a certain date. For call options,

the option is said to be in-the-money if the value of the underlying asset is above the strike

price, otherwise it is said to be out-of-the-money . On the other hand, a put option is
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in-the-money if the value of the underlying asset is below the strike price. The value by

which an option is in-the-money is called the intrinsic value.

Options are classified into two major groups depending on the time they are exercised.

Those options that are exercised on the maturity date itself are referred to as European

options while those that are exercised on any date before the specified date are called

American options. Option buyers are referred to as holders while option sellers are called

writers. The option buyer is also said to have taken the long position and the option seller

is said to have taken the short position.

1.4.2. The use of options. In general, there are two primary reasons why an investor

would want to use options. These are speculation and hedging. An option is a major

attraction in the management of risk since the maximum loss that can be incurred is the

initial premium (see Joshi (2004). Hedging is a means of cushioning an investment against

any risk or possible loss. In this way, options can be viewed as an insurance against any

adverse movements in the underlying asset. If the value of the underlying asset is less than

the exercise price, it does not benefit the call option holder to pay more for an asset that

can be purchased for less. On the other hand if the value of the underlying asset is more

than the strike price, the call option holder can exercise the option for a profit, that is,

buying the asset at the exercise price and selling it at the current market value which is

more than the price paid by the option holder. Thus, call option buyers hope that the

value of the underlying asset will increase substantially before the option expires. However,

buyers of put options hope that the value of the undelying asset plummets in order to make

a profit (Wilmott et al (1995)).

Investors who believe that the price of an asset can rise buy stocks in that company. If

the price of the asset rises, the investor makes money, otherwise the investor loses money.

Such investors are said to be speculating . In the case where the investor speculates that

the price will fall, one may opt to sell the asset or buy puts. When an investor sells shares

that he or she does not own he or she is said to be selling short and will thus profit from

a fall in shares. Explicit examples can be found in Hull (1989) and Joshi (2004).

1.4.3. Major Option Pricing Models. In this subsection, we review briefly two

discrete-time models for valuing options. We specifically review models for valuing

European options. The underlying asset is stock. Cox et al (1979) present simpler and
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more straightforward derivations of the two option pricing models that we review in this

thesis.

1.4.3.1. The Binomial Option Pricing Model. The Binomial Option Pricing Model is

premised on the assumption that the stock price St at any time t follows a multiplicative

binomial process over discrete periods without paying dividends and transaction costs.

Under the binomial process the price of stock in the next period may be in one of the two

states, ”up” or ”down”. The movement of stock is observed over n periods.

Let S be the current price of stock and K be the exercise price. Suppose that in each period

the price of the stock can go up by u with probability p or down by d with probability 1-p.

Thus, if S is the current stock price, then during the next period the stock price may move

from S up to uS or down to dS. Then the price of stock at the end of n periods will be

(1.4.1) ujdn−jS,

where j is the number of times the stock is in an “up” state. If the option expires out-of-

money, that is,

(1.4.2) ujdn−jS < K,

then the stock can be purchased for ujdn−jS since it is cheaper. Thus the call option has

no value. However, the option will have some value if value of stock is greater than the

exercise price, that is,

(1.4.3) ujdn−jS > K.

(see Netfci (1996)). In this case one can buy the stock at K and sell it at a higher price of

ujdn−jS to make a profit of ujdn−jS −K. In view of this, market participants would place

a value of ujdn−jS −K on the option, in particular,

(1.4.4) C = max[ujdn−jS −K, 0].

Using the assumption that there are to be no arbitrage opportunities and the fact that the

call must finish in-the-money, the value of a call option is given by

(1.4.5) C =
Σn

j=a(
n!

j!(n−j)!
)pj(1− p)n−j[ujdn−jS −K]

rn
,

where:

C = the current value of the call,
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S = the current stock price,

K = the exercise price,

n = the number of periods remaining to expiration,

r = the one plus the riskless rate of interest,

a = the minimum number of upward movements required for the option to finish in-the-

money while p and 1−p are defined as follows: p ≡ r−d
u−d

and 1−p ≡ u−r
u−d

. n!
j!(n−j)!

represents

the number of paths the stock can take to reach a certain point in a binomial tree (see Cox

et al (1979)).

A relationship between the underlying asset and its options, called put-call-parity, is

used to find the corresponding value of a put option. If P is the value of a put option,

then using the put-call-parity

(1.4.6) S + P − C = Ke(T−t),

the value of the European put option is found to be

(1.4.7) P =
Σn

j=a(
n!

j!(n−j)!
)pj(1− p)n−j[K − ujdn−jS]

rn

1.4.3.2. The Black-Scholes Model. Most texts present a derivation of the Black-Scholes

formula for calculating options by using the concept of arbitrage and the lognormal model

of asset price movements (see Willmott et al (1995), Joshi 2004, Hull (1989) and Ross

(1999)). The assumptions used and eventual derivation of the model using stochastic

differential equations can be found in Willmott et al (1995) and Hull (1989).

However, other authors derive the Black-Scholes formula as a limiting case of the Binomial

Option pricing formula in equation (1.4.5) (see Cox et al (1979)). Equation (1.4.5) can be

rewritten as

(1.4.8) C = S[
Σn

j=a(
n!

j!(n−j)!
)pj(1− p)n−jujdn−j

rn
]−Kr−n[Σn

j=a(
n!

j!(n− j)!
)pj(1− p)n−j]

Let the terms in the closed parenthesis be B1 and B2 and noting that

(1.4.9)
pj(1− p)n−jujdn−j

rn
= [(

u

r
)p]j[(

d

r
)(1− p)]n−j

This can be written as pj
∗(1 − p∗)n−j where p∗ = (u

r
)p and 1 − p∗ = (d

r
)(1 − p). Then the

equation can now be written as

(1.4.10) C = SB1 −Kr−nB2.
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By letting the number of periods approach infinity, B1 and B2 converge to Φ(d1) and Φ(d2)

respectively. Thus

(1.4.11) C = SΦ(d1)−Kr−nΦ(d2),

where

d1 =
ln( S

K
) + (r + σ2

2
)(T − t)

σ
√

T − t

and

d2 =
ln( S

K
) + (r − σ2

2
)(T − t)

σ
√

T − t
= d1 − σ

√
T − t.

Φ(·) is the cumulative probability distribution function for a standardised normal variable,

where C = the current value of the call,

S = the current stock price,

K = the exercise price,

r = risk-free interest rate,

σ = volatility of stock,

t = current time,

and T = expiration date of the option.

It can also be shown using equation (1.4.6) that the value of the European put option, P ,

is

(1.4.12) P = −Kr−nφ(−d2)− Sφ(−d1)

Evaluation of values of American call and put options is thoroughly covered in Hull (1989)

and Wilmott et al (1995).

In this thesis, we develop a model that can be used to model price changes using the double

gamma probability distribution. With the model, we forecast prices of different stocks and

the world’s major financial indices. Lastly, we compare the results of this model with

results obtained when a conventional log-normal distribution of stock prices is assumed.

1.5. Structure of the thesis

The rest of the thesis is structured as follows. Chapter 2 reviews major concepts in sto-

chastic processes that are cardinal to work related to this thesis. It provides a synopsis

of relevant literature in the area of stochastic processes as well as a highlight of some
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asset pricing models. Most of the work in this chapter can be found in Bhat (1984),

Medhi (1982), Ross (1999), Kao (1997), Joshi (2004) and other relevant research articles.

In Chapter 3, the research methodology used and the proposed model are presented. In

Chapter 4, results are presented, analysed and conclusions are made.



CHAPTER 2

Review of Some Stochastic Processes

In this chapter literature in areas relevant to the study is reviewed. In particular stochastic

processes and some stock price models are reviewed at length. Parameter estimation is also

reviewed.

2.1. Stochastic Processes

Many phenomena may be observed as random realisations over time. This is true in finance.

Hence the study of collections of random observations over time called stochastic processes

is very crucial. In this chapter we review some stochastic processes that have been used in

modeling finance dynamics.

Definition 2.1.1. A stochastic process is a family of random variables {X(t) : t ≥ 0}
where t ∈ T.

The values X(t) assumed by the process are called states while the set of all possible values

is called the state space. On the other hand the set of all possible values of the indexing

parameter is called the parameter space or index set T. The index t is often viewed as

a time parameter while the index set T is viewed as the set of all possible time points.

A typical example is the price of a stock in a financial market at time t, say S(t). The

states would be the values S(t) assumes at any time t. When the index set T is countable

the process {X(t)} is said to be a discrete-time stochastic process while when the process

is defined at every instant over a finite or infinite interval, then {X(t)} is said to be a

continuous-time stochastic process .

Every empirical data or stochastic process has a theoretical probability distribution behind

it. There are various techniques of modeling an unknown probability density through

parameter estimation. If the model turns out to be a good fit, the properties of the

stochastic process can be approximated by the known properties of the distribution. In

a similar way, if a real-life process, such as a stock price process, is observed to have the

14
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attributes of some stochastic process, then the behaviour of the real stock prices can be

easily modeled (cf Bhat (1984)).

In this thesis we focus on stock prices {S(t)} as our stochastic process. An analytical study

of historical stock data can be used to estimate its essential characteristics. Where it is

not possible to explicitly deduce the model of the stochastic behaviour analytically due to

its complexity, provided there is a starting point, the derivation of an estimate of a model

may be obtained through simulation techniques. This is achieved by mimicking the process

several times and averaging the sample characteristics so obtained. These techniques are

reviewed in greater detail in subsection (2.2.3).

In the next section, we briefly review some concepts that are central to the thesis.

2.1.1. Distribution of Stochastic Processes. For any stochastic process {X(t)}
it is customary to attempt to fit a probability distribution in order to understand the

characteristics of the process. Although a stochastic process {X(t) : t ∈ T} has a

corresponding probability distribution, in practice the specific information on the process

{X(t) : t ∈ T} may not be easily described by a simple distribution (see Bhat (1984)).

The common approach is to define a joint distribution by studying the process at discrete

time points.

Let (t1, t2, · · · , tn), where t1 < t2 < · · · < tn, be a set of discrete time points. Then the

joint distribution for the process X(t) at these points is defined as

(2.1.1) P [X(t1) ≤ x1, X(t2) ≤ x2, · · · , X(tn) ≤ xn]

This distribution assumes its simplest form when the random variables are independent as it

is thus given as the product of individual marginal distributions. However, in most practical

situations the processes are more complex because of the existence of dependencies among

the random variables. Although it is desirable to have a joint distribution of the form

(2.1.1) some conditional probability distribution functions, called transition probabilities ,

are defined based on some information of the stochastic process available for any specific

value of the time parameter.

Let t0 and t1 be two points in the index set T such that t0 ≤ t1. Then the conditional

transitional function may be written as

(2.1.2) F (x0, x1; t0, t1) = P [X(t1) ≤ x1|X(t0) = x0]



2.1. STOCHASTIC PROCESSES 16

For a stochastic process with discrete parameter and state spaces, the transition

probabilities are defined as

(2.1.3) P
(m,n)
ij = P (Xn = j|Xm = i), n ≥ m

We shall revisit these in subsubsection (2.1.2.1) under some general properties.

In most real-life situations stochastic processes exhibit some form of dependence (Bhat

(1984) and Medhi (1982)). Hence stochastic processes may be broadly described according

to the nature of dependence relationship existing among members of the family.

Definition 2.1.2. If for all t1, t2, · · · , tn ∈ T and t1 < t2 < · · · < tn, X(t2)−X(t1), X(t3)−
X(t2), · · · , X(tn) − X(tn−1) are independent, then {X(t) : t ∈ T} is said to be a process

with independent increments .

This implies that in a process with independent increments the magnitudes of state change

over non-overlapping intervals are mutually independent (Kao (1997)). A related property

is the stationary increment property.

Definition 2.1.3. A stochastic process {X(t) : t ∈ T} is said to possess the stationary

increment property if the random variable X(t + s)−X(t) possesses the same probability

distribution for all t and any s > 0.

This implies that the probability distribution of the magnitude of state change depends

only on the difference in the lengths of the time indices and is independent of the time

origin used for indexing parameter (Kao (1997) and Ross (1996)). Various authors have

assumed these properties for changes in stock prices.

2.1.2. Some Common Stochastic Processes. In this section we review some

common stochastic processes that are encountered in financial mathematics. We shall

further explore some important properties of such processes, most specifically we review

processes with discrete time and parameter spaces. The bulk of the content in this section

can be found in Ross (1996), Moran (1968), Kao (1997), Bhat (1984) and Medhi (1982).

2.1.2.1. Markov Chains. An asset such as a stock traded on the stock market either

increases, decreases or does not change in price each time the market opens and closes.

In this way the stock can, apart from being regarded as a physical system with three
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possible states, be viewed as a stochastic process. Stock prices are assumed to have a

special property which we define below.

Definition 2.1.4. The stochastic process {Xn, n = 0, 1, 2, · · · } is a discrete-time Markov

chain, if, for all j, i, j1, j2, ....., jn−1 ∈ N ,

P [xn = j|Xn−1 = i, Xn−2 = j1, ., X0 = jn−1] = P [Xn = j|Xn−1 = i] = Pij

For the continuous-time Markov chain, we adopt the definition given by Ross (1996).

Definition 2.1.5. The stochastic process {X(t), t ≥ 0} is a continuous-time Markov chain

if for all s, t ≥ 0 and nonnegative integers i, j, x(u), 0 ≤ u ≤ s,

P [X(t + s) = j|X(s) = i,X(u) = x(u), 0 ≤ u ≤ s] = P [X(t + s) = j|X(s) = i]

The j values in the two definitions are referred to as states of the Markov chain. Thus if

Xn has outcome j, the process is said to be at state j at the nth trial. The probability Pij,

called one-step transition probability , represents the probability that the process will make

a transition into state j given that it was previously in state i. The transition probabilities

share similar properties as those of ordinary probabilities such that Pij ≥ 0, i, j ≥ 0,
∑∞

j=0 Pij = 1, i = 0, 1, · · · · · · ,∞.

Markov chains are widely used in the modeling of problems in many application areas of

economic systems. The Markov chains are classified in accordance with some fundamental

properties of the states of the system (see subsubsection 2.1.2.1).

A Markov property may alternatively be interpreted as stating that the conditional

distribution of any future state Xn+1 given the past states X0, X1, · · · , · · · , Xn−1 and the

present state Xn is independent of the past states and depends only on the present state

(Ross (1996)). Stock prices are assumed to follow the Markov process because of the weak

form of market efficiency which states that the present price reflects all the information

of previous prices (Hull (1989)). This implies that only the present state is relevant for

predicting the future, hence if St is the price of stock at time t, then

P [St+1 = s|St = st, . . . , S1 = s1, S0 = s0] = P [St+1 = s|St = st].
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The transition probability Pij is referred to as a one-step transition probability while the

n-step transition probability, denoted P n
ij, is defined as

P n
ij = P [Xn+m = j | Xm = i, n ≥ 0, i, j ≥ 0].

This represents the probability that a process in state i will be in state j after n additional

transitions. The one-step transition probability shall be written Pij instead of P 1
ij. In order

to compute n-step transition probabilities, the Chapman-Kolmogorov Equations defined

below are normally used

P n+m
ij =

∞∑

k=0

P n
ikP

m
kj , ∀n,m ≥ 0, ∀i, j.

(cf. Ross (1996)).

The transition probabilities are usually presented in matrix form as

P =




p11 p12 p13 · · · p1i · · · p1n

p21 p22 p23 cdots p2i · · · p2n

...
...

...
...

...
...

...
...

...
...

...
...

...
...

pn1 pn2 pn3 · · · pni · · · pnn




.

While the Chapman-Kolmogorov equations can be used in the computation of transition

probabilities, an illuminating approach is to undertake a classification of the states. The

next subsection highlights the various classes in which states of a Markov chain may fall.

Classification of States

The states of any Markov chain can be classified according to certain basic properties.

The classification is based on definitions given in this subsection.

Definition 2.1.6. State j is said to be accessible from state i if j can be reached from i

in a finite number of steps. If two states i and j are accessible to each other, then they are

said to communicate. We denote this by i ↔ j.

It can be shown that communication is an equivalence class (cf. Ross (1996)). In this way,

two states that communicate are said to be in the same class. Further a Markov chain is

said to be irreducible if there is only one class, in other words, if all states communicate.

Mathematically, the following properties of the communication relation hold (cf. Bhat

(1984), Ross (1996)):
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(i) i ↔ i (Reflexivity)

(ii) if i ↔ j, then j ↔ i (Symmetry)

(iii) if i ↔ j and j ↔ k, then i ↔ k (Transitivity).

While the equivalence classification of states takes into account the external relationship

between the states, another closely related classification takes into account the internal

nature of each state. This form of classification is considered through the following

definitions (cf. Bhat (1984), Ross (1996)).

We denote the probability that, starting from i, the process moves to state j for the first

time in the n− th step by fn
ij. More formally, let

(2.1.4) fn
ij = P [Xn = j, Xk 6= j, k = 1, 2, · · · , n− 1 | X0 = i]

and

(2.1.5) fij =
∞∑

n=1

fn
ij

With this notation, we give the following definitions.

Definition 2.1.7. A state i is said to be recurrent if and only if, starting from state i

eventual return to state i is certain.

In terms of the probabilities given by (2.1.5) this implies that the state i is recurrent if

and only if fii = 1. However, it is possible that the process may not return to the state

it originally started from. This situation solicits another classification as given in the

following definition by Bhat (1984).

Definition 2.1.8. A state is said to be transient if and only if, starting from state i,

there is a positive probability that the process may not eventually return to state i, that

is, fii < 1.

At times it is important to consider the number of moves required for the process to return

to a specified state. Accordingly, let µii denote the expected number of transitions needed

to return to state i assuming the process started from state i. When state i is recurrent,

the mathematical expectation of the number of transitions required for the first return to

state i in n steps is given by

µii =
∞∑
i=1

nfii
n
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The number of transitions required for the first return to the same state is called the

recurrence time and consequently µii is called the mean recurrence time of state i. In view

of the definition of µii, a recurrent state can be further classified as null recurrent or positive

recurrent.

Definition 2.1.9. A recurrent state i is said to be null recurrent if and only if µii = ∞.

A recurrent state is said to be positive recurrent if and only if µii < ∞, that is, the mean

recurrence time is finite.

The states of a Markov chain can also be classified as transient or recurrent using transition

probabilities P n
ii , the probability that the process occupies state i after n steps given that it

was initially in state i. This is different from fn
ii which refers to the probability of the first

return to state i in n steps. This classification is captured in the following proposition and

corollary found in Ross (1996) with some slight modification adapted from Bhat (1984).

Proposition 2.1.10. A state i is

(i) recurrent if and only if
∑∞

n=0 P n
ii = ∞.

(ii) transient if and only if
∑∞

n=0 P n
ii < ∞

Corollary 2.1.11. If i is recurrent and i ↔ j, then j is also recurrent.

The proofs of the proposition and the corollary can be found in Ross (1996). The corollary

shows that recurrence is a class property. Further, since all states in an equivalence class

communicate, they are all either recurrent or transient. This implies that the class of states

as a whole can therefore be considered as being either recurrent or transient.

The description of recurrent states given in proposition 2.1.10 provides another way to

characterise a recurrent state.

Definition 2.1.12. Let d(i) denote the greatest common divisor of all integers n ≥ 1 for

which P n
ii > 0. The integer d(i) is called the period of state i. When the period is 1, the

state is called aperiodic.

Further classification of states can be discerned from the definitions that follow.

Definition 2.1.13. A state i is said to be an absorbing state if and only if Pii = 1.
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The definition implies that once the process enters state i it remains in that state. Thus

when state i is absorbing f 1
ii = Pii = 1 and hence µi = 1 which shows that i is positive

recurrent. In this way, a Markov chain may also be classified as absorbing if it has at least

one absorbing state, and if from every state it is possible to go to an absorbing state (not

necessarily in one step). On the other hand, in an absorbing Markov chain, a state which

is not absorbing is called transient .

In other types of Markov chains it is possible that all states belong to the same equivalence

class. Since communication is an equivalence relation, any two classes may either be disjoint

or the same. If no states outside of an equivalence class can be reached from any state

within the class, the class is said to be closed .

Definition 2.1.14. A Markov chain is irreducible if its only closed class is the set of states

in its state space S.

Thus all the states of an irreducible Markov chain belong to one equivalence class.

There are many situations that are modeled as Markov chains in particular and stochastic

processes in general. We briefly review some examples of stochastic processes that possess

the Markov property and hence modeled as Markov chains.

2.1.2.2. Martingales. Although the origin of martingales lies in the history of games of

chance, they are powerful tools for analysing a variety of stochastic processes. We adopt

the definition given by Ross (1996) with a slight modification on notation.

Definition 2.1.15. A stochastic process {St, t ≥ 1} is said to be a martingale process if

E[|St|] < ∞ for all t and E[St+1 | St, St−1, · · · , S2, S1] = St.

On the other hand if E[St+1 | St] ≥ St for all t it is called a submartingale while if

E[St+1 | St] ≤ St it is called supermartingale. A similar definition of martingales as a

continuous time process can be found in Neftci (1996).

The stochastic process {St, t ≥ 1} could be the price process of a security whose price

at any time t is St. The martingale property implies that the best forecast of unobserved

future values is the last observation on St (Neftci (1996)). Thus at any one time the current

price fully represents all the information. In this sense, efficient markets are equated to

the existence of a martingale.
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The definition also implies that future movements in martingales are impossible to forecast

(Neftci (1996)). If St is a martingale and consider the forecast change in St over a time

interval length ∆ > 0, then

E[St+∆ − St] = E[St+∆]− E[St].

Since St is a martingale and E[St] is a forecast of the martingale that is already revealed,

then

E[St+∆ − St] = 0.

Thus a fundamental characteristic of martingales is the impossibility to forecast their

future movements. However, stock prices are not completely unpredictable and hence

are generally not martingales (Neftci (1996)). Although most financial assets are not

martingales, they can be converted into martingales. The advantage of this is that

properties of martingales can be used to analyse financial data. For instance, a probability

density P ′ can be identified such that a financial asset such as stock discounted by the

risk-free rate r become martingales. Then an equality such as

EP ′ [e−r∆St+∆] = St

for all ∆ > 0 can be used in pricing derivative securities. Methods for converting other

processes into martingales can be found in Neftci (1996).

2.1.2.3. Birth and Death Processes. The birth-death process is a special case of

continuous-time Markov process where the states represent the current size of a population

and where the transitions are limited to states ‘increase’ and ‘decrease’. Although death

and birth processes are more relevant in problems related to populations, it is also used in

economics. Birth and death process models are used in inventory systems if replenishment

of stock is accompanied only by placing orders. In such a system, if demands for items

occur in a Poisson process, then the inventory in between replenishments can be modeled

as a pure death process (Bhat (1984)).

Definition 2.1.16. A birth and death process {X(t), t ≥ 0} is a continuous-time discrete

space (with state-space N) Markov process such that

(a) P [X(t + h) = n + 1|X(t)] = n = λnh + o(h), for n > 0

(b) P [X(t + h) = n− 1|X(t)] = n = µnh + o(h), for n ≥ 1
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(c) P [X(t + h) = n|X(t)] = n = 1− (λn + µn)h + o(h), for n > 0,

where any function f(·) is said to be o(h) if limh→ 0
f(h)

h
= 0.

It can be seen from the definition that three types of transitions are possible: one birth,

or one death, or no birth nor death. In other words, three states can be distinguished and

may be interpreted as states ‘increase’, ‘decrease’ or ‘no change’. The state of the process

is usually interpreted as the size of the population (Ross (1996) and Kao (1997)). When

the state increases by 1, it is said that a birth has occurred while when it decreases by 1

it is said that a death has occurred. In other words, when a birth occurs, the process goes

from state n to n + 1. When a death occurs, the process goes from state n to state n− 1.

When neither death nor birth occurs, the process remains in the same state n.

The birth and death process is specified by birth rates {λn}n=0,1,···∞ and death rates

{µn}n=1..∞}. If λn = 0 for all n, the process is said to be a pure death process while

if µn = 0 for all n the process is said to be a pure birth process.

An example of a pure birth is a Yule process. This is the case where in a population each

member acts independently and gives birth at an exponential rate λ. If no single member

of the population ever dies, then, if X(t) represents the population at time t, the process

{X(t), t ≥ 0} is a pure birth process with λn = nλ.

A detailed treatment of birth and death processes can be found in Ross (1996), Kao (1997),

Medhi (1982) and Bhat (1984).

2.1.2.4. Counting Processes. In the study of a number of phenomena, it may be useful

to consider the number of occurrences during a period of time or space. For instance, one

may be interested in the number of times the stock price has gone up or down in any given

period. This is used in option pricing using the Binomial option pricing model reviewed in

subsubsection 1.4.5. Such type of stochastic process is called a counting process. We adopt

the definition given in Ross (1996).

Definition 2.1.17. A stochastic process {N(t), t ≥ 0} is said to be a counting process if

N(t) represents the total number of events that have occurred up to time t.

In view of the definition, a counting process N(t) must satisfy the following:

(i) N(t) ≥ 0.
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(ii) N(t) is integer valued.

(iii) If s < t, then N(s) ≤ N(t).

(iv) For s < t, N(t)−N(s) equals the number of events that have occurred in the interval

(s, t].

Counting processes that possess independent increments and stationary increments are a

special type of a well known stochastic process called the Poisson process. Using the four

requirements that a counting process must satisfy as outlined above, the following theorem

is cited.

Theorem 2.1.18. Let {N(t), t ≥ 0} be a counting process with independent increments

such that N(0) = 0. Then there exists a constant λ > 0 such that the transition probability

distribution of the stochastic process {N(t), t ≥ 0} has a Poisson distribution given by

P [N(t + s)−N(s) = n] = e−λt (λt)n

n!
, n = 0, 1, 2, · · · ,

where s, t ≥ 0.

The proof of this theorem can be found in Medhi (1982), Bhat (1984), Kao (1997) and

Ross (1996).

The expected number of events, called the rate of the process, that have occurred up to

time t can be found as E[N(t)] = λt. We use this theorem and associated results in our

proposed model in chapter 3.

In the next three subsubsections, we review two stochastic processes in continuous time

which are widely used in finance and other fields. These fall broadly under the notion of

Brownian motion.

2.1.2.5. Geometric Brownian Motion.

Definition 2.1.19. Suppose P (t) is the price of a security at a time t from the present.

The set of prices {P (t)}, with 0 ≤ t < ∞, is said to follow a Geometric Brownian motion

with drift parameter µ and volatility parameter σ if for all t ≥ 0 and s ≥ 0, the random

variable
P (t + s)

P (t)
is independent of all prices up to time t and log

P (t + s)

P (t)
is a normal

random variable with mean µs and variance sσ2.

The geometric brownian motion implies that it is only the present price, not past history of

prices, that affects the movements of future prices. In addition, probabilities of the ratio of
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the price P (t) at a future time t to the present price P (t0) will not depend on the present

price P (t0). A more thorough coverage of this concept is given in Ross (1996).

2.1.2.6. Brownian Motion. In this section the basic definition of the Brownian motion is

given and is related to stock prices. We also briefly trace its origins and note its similarities

to the geometric Brownian motion. A thorough introduction to the concept of Brownian

motion can be found in Ross (1999), Willmott et al (1995), Joshi (1989), Neftci (1996) and

Kao (1997).

Definition 2.1.20. Let {P (t)} be a set of prices for 0 ≤ t < ∞. The set of prices {P (t)}
is said to follow a Brownian motion with drift parameter µ and variance parameter σ2 if

for all t ≥ 0 and s ≥ 0, the random variable P (t + s)− P (t) is independent of all prices

up to time t and is a normal random variable with mean µs and variance sσ2.

In 1827 the Brownian motion was used to describe the unusual motion displayed by a

small article totally immersed in a liquid or gas. Later in 1925, Albert Einstein showed

mathematically that Brownian Motion could be explained by assuming that the immersed

particle was continually being bombarded by the smaller particles surrounding it. It was,

however, independently introduced in 1900 by Louis Bachelier to model price movements

of stocks and commodities (Ross (1996)).

Stock price movements seem to display behaviour similar to Brownian motion. The

immersed particle may be viewed as the stock price and the smaller particles as the trades

that move the stock price. Each trade moves the price up or down and each trade is

independent from other trades.

It is worthwhile noting that the geometric Brownian motion and the Brownian motion

share the property that the price at a future date depends only on the present price. The

only difference between the two concepts is that in the Brownian motion it is the difference

in prices that has a normal distribution whereas in the geometric Brownian motion it is

the logarithm of their ratio that has a normal distribution.

2.1.2.7. The Wiener Process. The Wiener process is similar to the Brownian motion

process with the exception that the Wiener process is appropriate for continuous stochastic

processes. We paraphrase the definition found in Medhi (1982).

Definition 2.1.21. A stochastic process {W (t), t ≥ 0} is said to be a Wiener process if it

satisfies the following conditions:
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(a) {W (t), t ≥ 0} has stationary independent increments.

(b) Every increment W (t)−W (s) is normally distributed with mean µ(t− s) and variance

σ2(t− s).

The first part of the definition implies that the Wiener process is a Markov process with

independent increments while the second part implies that a Wiener process is Gaussian.

A Wiener process in which W (0) = 0, µ = 0 and σ = 1 is called a standard Wiener process.

The Wiener process has many applications. It is used to model the movement of particles

immersed in a liquid or gas in quantum mechanics. In finance, the Wiener process is used

to model price fluctuations in stock and commodity markets. A detailed treatment of the

Wiener process can be found in Bhat (1984), Neftci (1986) and Willmott (1995).

As has been mentioned in section (2.1.1), to understand the characteristics of a stochas-

tic process it is desirable to fit a probability distribution. The characteristics of such

probability distributions need to be estimated. One such procedure for estimation is the

method of maximum likelihood and this is the object of discussion in the next section.

2.2. Review of Parameter Estimation

The study of properties of stochastic processes is very crucial in finance. Historical data is

usually used to estimate the essential characteristics of stochastic processes (see subsection

2.1.1). In some cases, a probability distribution may be fitted. The characterstics or

parameters of such probability distributions need to be estimated. One such procedure

for estimation is maximum likelihood estimation. In this chapter, we review maximum

likelihood estimation and related concepts.

2.2.1. Maximum Likelihood Estimation. Given a data set taken from any

population, it is customary to inquire about the characteristics of the population from

which it was taken. One way of making such inferences is to assume some kind of

probabilistic model that would describe the population. But since the parameters of

such a model are not known, statistical inferences of the population would not be easy

without employing estimation. One single most popular method of estimation is Maximum

Likelihood Estimation (MLE).

Definition 2.2.1. Let {X1, X2, X3, · · · , Xn} be a set of random variables with a joint

density function f(x1, x2, · · · , xn). Given observed values Xi = xi for i = 1, 2, · · · , n, the
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likelihood of a function of x1, x2, · · · , xn is defined as

lik(ϑ) = f(x1, x2, · · · , xn|ϑ).

The likelihood function gives the probability of observing the given data as a function

of the parameter. The aim of maximum likelihood estimation is to find the parameter

value(s) that makes the observed data most likely. Instead of maximising lik(ϑ) it is easier

to maximise its logarithm l(ϑ) = Σlog[f(xi|ϑ)] since the logarithm of a product of variables

simplifies into the sum of logarithm of the individual variables. Then the maximum

likelihood estimators of ϑ1, ϑ2, · · · , ϑn are solutions to the simultaneous equations given

by
∂(l)

∂ϑi

= 0, where i = 1, 2, · · · , n.

We briefly review selected examples of maximum likelihood estimators for some common

probability distributions. Among the distributions, we highlight the gamma distribution

which is central to this study.

Example 2.2.2. Normal Distribution

Under the Normal distribution, there are two parameters that would be estimated. These

are mean µ and standard deviation σ. Since the natural logarithm of the likelihood function

is

l(µ, σ) = −nlnσ − n

2
ln2π − 1

2σ2

n∑
i=1

(xi − µ)2,

then using partial differentiation it can be shown that the maximum likelihood estimators

for µ and σ are µ = x and σ =

√
1

n
Σ(xi − x)2 respectively.

Example 2.2.3. Poisson Distribution

Suppose a random variable follows a Poisson distribution with parameter λ, then

P (X = x) =
λxe−λ

x!
.

If x1, x2, · · · , xn are independently and identically distributed and Poisson, then the

logarithm of the corresponding likelihood function is

l(λ) = lnλ

n∑
i=1

xi − nλ−
n∑

i=1

lnxi!.

Upon differentiating partially and solving the equation
∂(l)

∂λ
= 0, the maximum likelihood

estimator obtained is λ̂ = x.
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Example 2.2.4. Gamma Distribution

Let x1, x2, · · · , xn be a random sample taken from a gamma distribution with parameters

α and β, then its density function is given by

f(x|α, β) =
1

Γ(α)
βαxα−1e−βx,

where 0 < x < ∞. The parameter α is called a shape parameter for the gamma function

and β is called a scale parameter .

Although the logarithm of an independently and identically distributed sample that follows

the gamma distribution is

l(α, β) = nαlnβ + (α− 1)
n∑

i=1

lnxi − β

n∑
i=1

xi − nlnΓα,

it is impossible to obtain maximum likelihood estimators using the procedure used in the

above examples. Instead numerical methods may be used. However, using the method of

moments, the maximum likelihood estimators are found to be

α̂ =
x2

s2
and β̂ =

s2

x

where s2 is sample variance while x is sample mean.

In our model we use these two maximum likelihood estimators. A more rigorous treatment

of maximum likelihood estimation is provided in Myung (2003), Hogg et al (1978) and Rice

(1988).

Example 2.2.5. Double Gamma Distribution The general form of the double gamma

distribution has the following probability density function:

f(x) =
1

2

( |x−µ|
β

)(α−1)e−( |x−µ|
β

)

βΓ(α)

where µ and β are the positive location and scale parameters respectively. The distribution

is also referred to as the reflected gamma distribution. Our proposed model is based on

the double gamma distribution and its model parameters shall be estimated using the

maximum likelihood estimators given above.

When µ = 0 and β = 1 then the distribution is referred to as the standard form of the

gamma distribution given by the following probability density function

f(x) =
1

2

|x|α−1e−|x|

Γ(α)
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where α is a positive number that is the shape parameter and Γ is the standard gamma

function.

The following are graphs of the double gamma probability density function for different

values of the shape parameter.

Figure 2.1. Graphs of the double gamma probability density function with

shape parameters 1, 2, 5 and 0.5

From left to right, the top row exhibits the graphs of the double gamma probability density

function with shape parameters 1 and 2 respectively while the bottom row displays graphs

corresponding to shape parameters 5 and 0.5 respectively.

In addition to maximum likelihood estimation, other estimation methods may be used to

obtain estimators such as the sample mean. However, some estimators may not be very

good estimators. For the sample mean, we appeal to the Law of Large Numbers. This is

reviewed in the next section.

2.2.2. The Law of Large Numbers. The use of repeated experiments to model

the behaviour of random variables is a standard practice in applied science. After a large
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number of experiments, it is possible to estimate, for instance, the relative frequency of a

random variable. As most commonly computed statistics, such as averages, are expressed

in terms of sums it is desirable to consider taking limits. We take advantage of two laws,

the Weak Law of Large Numbers (WWLN) and the Strong Law of Large Numbers (SLLW),

that we use in our thesis and we state them here. We adopt versions found in Ross (1984)

but we modify them slightly.

Theorem 2.2.6. The Strong Law of Large Numbers

Let X1, X2, · · · · · · be a sequence of independent and identically distributed random variables,

each having a finite mean µ = E[Xi]. Then,

P
(

lim
n→∞

Xn = µ
)

= 1

.

The Strong Law of Large Numbers asserts that the sample mean X converges to the

population mean µ with probability 1. This justifies the use of X as an estimator for µ

provided the sample is large.

Theorem 2.2.7. The Weak Law of Large Numbers

Let X1, X2, · · · · · · be a sequence of independent and identically distributed random variables,

each having a finite mean µ = E[Xi], Then, for any ε ≥ 0,

lim
n→∞

P
(∣∣Xn − µ

∣∣ < ε
)

= 1.

In both cases, Xn = (X1 + · · · + Xn)/n. The proof of the Law of Large Numbers can

be found in Rice (1988) while that of the Weak Law of Large Numbers is found in Ross

(1984).

It is worth pointing out that these laws mean the same thing. The only difference is in

the manner in which the sample mean converges to the population mean. The weak law

states that as the sample size grows larger, the difference between the sample mean and the

population mean will approach zero. The strong law states that as the sample size grows

larger, the probability that the sample mean and the population mean will be exactly equal

approaches 1.0. In essence, both laws imply that the sample mean X is increasingly likely

to be close to the population mean µ as n →∞. This justifies the use of the sample mean

X as an estimator for population mean µ.
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While maximum likelihood estimation is used to estimate the basic statistics of a system,

it also helpful to model the system through repeated experimentation. This is the focus of

the next section.

2.2.3. Simulation. Simulation is one of the most widely used statistical approaches

used to model the operation of a real system. It involves learning about a real system using

a model that represents the real system. The model comprises mathematical expressions

and logical relationships that are used to evaluate outputs for given values of inputs. The

values obtained using the model are then compared with the real system or situation.

Basically any simulation model has two inputs called controllable inputs and probabilistic

inputs . The values for the controllable inputs are selected by the analyst while the values

for the probabilistic inputs are randomly generated by a computer. The model uses values

of the controllable inputs and values of the probabilistic inputs to generate a value or

values of the output. Data obtained from results of a series of similar experiments using

a variety of values of the controllable inputs is analysed and reviewed. The analysis and

review enables the analyst to make adjustments to the controllable inputs so that a desired

result of the real system can be obtained. This procedure of modeling the real situation

through repeated experimentation under the same conditions is known as simulation.

In this thesis, our random variable is the stock price St which we simulate as a Gamma

random variable. In Chapter 3 we explain in greater detail how we carried out the

simulation to obtain our results. Explicit examples of simulations of normal, exponential,

gamma, binomial, geometric and Poisson random variables are given in Ross (1984).

2.3. Stock Price Models

The determination of future values of assets such as stocks is becoming increasingly relevant

to investors as well as consumers and producers. Price forecasting is used for developing

trading strategies and negotiation skills to maximise benefit. In finance, the underlying

asset’s price is used in the evaluation of risk and pricing of derivative assets (see section

1.4).

In this section we review some of the work that has been previously done in asset pricing

in general and stock pricing in particular. This is intended to link work in this thesis and

previous work done by other researchers.
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There are different types of models that have been suggested for modeling financial data

in general and stock prices in particular. These models can be classified into two basic

categories: discrete time models and continuous time models. Most financial time series

are observable at fixed discrete time points. For instance, indices and stocks trading on the

world’s financial markets consist of daily opening and closing prices. The discrete nature

of such types of financial data is one of the motivations behind discrete time models. Thus

the models that we review in this section belong to either one of the two categories and

where necessary we specify the category that a particular model belongs to.

2.3.1. The Bachelier Model and Samuelson Model. Efforts to develop a

mathematical model for stock price behaviour can be traced back to two centuries ago.

In 1827, Robert Brown, while studying the random motion of a pollen on the surface of

water, introduced the notion of Brownian motion. Bachelier seems to be the first to develop

a mathematical theory of Brownian motion and used it to value stock options on the Paris

stock market (Straja (2006)). The price St of stock at any time t in Bachelier’s additive

model takes the form, in modern technology,

(2.3.1) St = S0 + µt + σBt, t ≥ 0

where S0 is the price at time t = 0, µ and σ represent drift and volatility respectively while

Bt is a standard Brownian process (Shepp (2000)). In differential form equation 2.3.1 may

be written as

(2.3.2) dSt = µdt + σdBt

The Bachelier model is premised on the assumption that the logarithm of price relatives

L(t, T ) = ln[S(t + T ) − S(t)] has the following four properties: random, statistically

independent, identically distributed and that their marginal distribution is Gaussian with

mean zero (see Mandelbrot (1963) and Fama (1970)). Due to advances in the theory of

speculation Bachelier’s four hypotheses have undergone various amendments as shown by

Mandelbrot (1963). Fama (1963) also concluded that a better description of distributions

of daily returns on common stocks is given by non-normal stable distributions other than

the normal distribution.

In his work, Bachelier used the model to value a European option. One major weakness of

his model is that prices can be negative. However, since then the theory has been modified
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by, among others, Samuelson (1965). Samuelson (1965) developed a similar model but in

exponential form by replacing Brownian motion with the geometric Brownian motion and

gave the pathwise solution

St = S0e
σWt+(µ−

σ2

2
)t

of the stochastic differential equation

(2.3.3) dSt = Stµdt + StσdWt

where µ and σ are as specified in Equation (2.3.1) while Wt is a Wiener process and t ≥ 0.

The pathwise solution has an added advantage that the price St remains positive for all

values of t. This model is widely used today, in particular in option pricing and hedging

(Follmer and Schweizer (1993)).

In more recent times, there has been a diversification of methods for modeling stock price

behaviour though a complete divorce from the Brownian motion concept is impossible.

In a recent paper, Rydberg and Shephard (1998) use the compound Poisson process to

model asset prices in addition to similar work independently done by Rogers and Zane

(1998). Their model is based on the assumption that the non-stationary and non-linear

price process follows

(2.3.4) St = S0 +

N(t)∑
t=1

Zt,

t ≥ 0 and {N(t)}t≥0 is a counting process that counts the number of transactions up to

time t while Zt is the price process associated with the t − th trade (see Rydberg and

Shephard (1998)). Norvaisa (2000) uses real analysis to model stock prices. His work is

found in Norvaisa (2000).

2.3.2. The Binomial Model. The Binomial Model for stock prices can be described

as a tree. At any deterministic time points, the nodes split into two. Thus at the end of

any time period the price can be in any two possible states, “up” or “down”. The price of

stock starts with a value S but moves up to uS with probability p and down to dS with

probability (1− p) over a small interval of length ∆t. Then at the end of n∆t periods the

price of stock will be

(2.3.5) Sn = ujdn−jS.
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At time n there are n possible values that the stock price can take and, in particular,

(2.3.6) P [Sn = ujdn−jS] =
n!

(n− j)!j!
pj(1− p)(n−j), j = 0, 1, 2, · · · , n,

where: u = 1
d
, d = e−σ

√
∆t, p = er∆t−d

u−d
, r = rate of interest during each period and σ is

stock volatility (see Rydberg (2000), Hull (1989) and Wilmott etal (1995)).

2.3.3. Lognormal Model for Stock Prices. The lognormal model for stock prices

is widely covered in the literature, especially in standard financial mathematics texts. The

bulk of the work in this section can be found in Joshi (2004) and Hull (1989). However,

Ito’s Lemma is adopted from Neftci (1996) and is restated below.

Lemma 2.3.1. Let G(St, t) be a twice-differentiable function of t and of the random process

St dSt = atdt + σtdWt, t ≥ 0 with well behaved drift and diffusion parameters, at and σt.

Then

(2.3.7) dG =
∂G

∂St

dSt +
∂G

∂t
dt +

1

2

∂2G

∂St
2σt

2dt.

A derivation of Ito’s Lemma can be found in Appendix 4A in Hull (1989).

Ito’s Lemma is used to derive the process followed by G = lnSt to obtain

(2.3.8) dG = (µ− σ2

2
)dt + σdW.

As µ and σ are constants, then G follows a Wiener process with constant drift rate µ− σ2

2
and constant variance rate σ2. Thus

(2.3.9) lnST − lnSt∼φ[(µ− σ2

2
)(T − t), σ

√
T − t]

where ST is the stock price at time T, St is the stock price at current time t while φ(ρ, κ)

denotes a normal distribution with mean ρ and standard deviation κ for T ≥ t.

Using properties of the normal distribution, it follows that

(2.3.10) lnST∼φ[lnSt + (µ− σ2

2
)(T − t), σ

√
T − t]

This shows that lnST has a lognormal distribution. The uncertainty about the logarithm

of the stock price is

(2.3.11)
√

var[lnST ]≈
√

T − t.
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Using equation ( 2.3.10) and properties of the lognormal distribution the expected value

of ST is given as

(2.3.12) E(ST ) = Ste
µ(T−t).

(see Hull (1989)).

Equation ( 2.3.12) can, therefore, be used to estimate the price of stock at time T. Although

this is the case, empirical studies show that the distribution of stock returns is far from

normal and that the logarithm of stock prices tend to have a distribution with log-linear

tails (Bibby and Sorensen (1997). Further it is shown that after a sufficiently long time

the logarithm of the stock price is approximately hyperbolically distributed (see Bibby and

Sorensen (1997)). A hyperbolic diffusion model for stock prices is reviewed in the next

subsection.

2.3.4. Hyperbolic Diffusion Model for Stock Prices. There is empirical evidence

that stock returns are better modelled by distributions other than the normal distribution.

Eberlein and Keller (1995) use a class of hyperbolic distributions to fit empirical returns

with high accuracy. Hyperbolic distributions differ from normal distributions in that

the log-density of the former is a hyperbola while the latter is a parabola. Hyperbolic

distributions have been used in various scientific areas such as modelling of turbulence and

sand deposits. One class of hyperbolic distributions is given by the hyperbolic density

function

hyp(x) =

√
α2 − β2

2ασK1(σ
√

α2 − β2)
e−α

√
σ2+(x−µ)2+β(x−µ)

where K1 denotes the modified Bessel function of the third kind with index 1, α and β

(with α > 0 and 0 ≤| β |≤ α) determine the shape of the distribution while σ and µ are

scale and location parameters respectively.

Eberlein and Keller (1995) analyse the prices of ten of the stocks that compose the

German stock index , DAX. Maximum likelihood estimation is performed to estimate

model parameters and after carrying out significant tests it is concluded that daily stock

returns are best modelled by hyperbolic distributions.

Bibby and Sorensen (1997) use hyperbolic distributions and propose a diffusion process

model for the logarithm of stock price. Due to empirical evidence that the logarithm of the
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stock price is a process with increments that are not independent, a model for the stock

price St of the following form is suggested:

(2.3.13) St = eκt+Xt

where

Xt = X0 +

∫ t

0

v(Xs)dWs

where Xt is the state variable and κt is the constant drift rate. On application of Ito’s

Lemma, the following is obtained

(2.3.14) dSt = St{[κ +
1

2
v2(logSt − κt)]dt + v(logSt − κt)dWt}.

This implies that the asset price St follows geometric Brownian motion provided

v(x) is constant. The parameters of the distribution may be calculated numerically.

Predota (2006), however, suggests the use of asymptotic formulas for maximum-likelihood

estimators of hyperbolic density functions while Bibby and Sorensen (1995) use martingale

estimation functions. Further methods for estimating parameters can be found in Kessler

(2000) and Bibby and Sorensen (2001).

Bibby and Sorensen (1997) obtained several statistical properties of the process St . For

instance, they showed that the marginal distribution of logSt is hyperbolic and hence logSt

is approximately hyperbolically distributed after a sufficiently long time period. Further,

the distribution of increments over short intervals has thick tails while an increment over

a long interval follows a distribution that is close to being hyperbolic. They also provided

the theory in applying the hyperbolic diffusion model to option pricing.

2.3.5. Time Series Models. In most financial applications, the prediction of future

values of assets is very crucial. Scientific forecasting, based on sound and statistical

methods, is used to provide a likely or expected value for some outcome. One such method

is regression. Regression is a technique for exploring relationships between variables of any

discrete time series data such as stock data. There are many regression models in finance

that attempt to establish relationships between variables with a view to forecast future

values. For instance, linear regression explores linear relationships by fitting straight lines

through data using the method of least squares. It attempts to fit a model of the form

(2.3.15) ŷt = a + bxt.
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However, stock price data do not exhibit linear relationships to warrant the use of simple

linear regression models of the form 2.3.15. More rigorous time series analysis methods are

often sought. These are reviewed in the following subsections.

2.3.5.1. Autoregressive Model of order p. Autoregressions are regression models that

relate a variable to its past values. If {Yt} is a time series, then a general autoregressive

model of order p, denoted AR(p), is a model of the form

(2.3.16) Yt =

p∑
i=1

ϕiYt−i + εt,

where ϕ1, ϕ2, · · · , ϕp are the parameters of the model and εt is an error term with zero

mean and constant variance σ2. An error term with zero mean and constant variance is

referred to as a white noise error term. In the case where p = 1, the model relates the

variable Yt to Yt−1 and it is called first order autoregressive model, abbreviated by AR(1)

and given by

(2.3.17) Yt = ϕ1Yt−1 + εt.

The autoregressive model represents a variable as a linear function of its past values. The

AR(1) model is restrictive since it assumes that Yt depends only on Yt−1. However, in

reality Yt might depend on other variables, hence the need for an AR(p) model.

Although an autoregressive model of order p may be used in modeling financial time series,

one major challenge is the choice of the value of p and related parameters. In practice,

useful tools are the autocorrelation function (ACF) and partial autocorrelation function

(PACF). A detailed treatment of these may be found in Anderson et al and Lutkepohl.

An improvement of the AR(p) model includes a moving average component. This model

is the subject of the next subsection.

2.3.5.2. Autoregressive Moving-Average (ARMA) Model. One model that has proven to

be extremely useful in the analysis of discrete-time random processes is the Auto-regressive

Moving-Average (ARMA) model. The ARMA model has two parts, an autoregressive (AR)

part and a moving average (MA) part. The model is usually referred to as the ARMA(p,q)

model where p is the order of the autoregressive part and q is the order of the moving

average part. In a moving average process, a variable is expressed in terms of current and

previous white noise errors. Consequently an MA(q) is a moving average model of order q
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and is written as

(2.3.18) Yt = εt +

q∑
i=1

ϕiεt−i.

Combining the AR(p) and the MA(q) parts leads to the ARMA(p,q) model of the form

(2.3.19) Yt = εt + Σp
i=1φiYt−i + Σq

i=1θiεt−i.

The error terms εt are assumed to be independently and identically distributed random

variables from a normal distribution with zero mean and variance σ2, that is, εt ∼ N(0, σ2).

2.3.5.3. Auto-Regressive Conditional Heteroscedasticity (ARCH) Model. Mandelbrot

(1963) observed that large price changes tend to be followed by other large changes, while

small changes are usually followed by other small changes. This phenomenon, known as

volatility clustering , is best modeled by a model developed by Robert Engle (2001) called

Auto-Regressive Conditional Heteroscedasticity (ARCH) Model.

As the name suggests, the ARCH model has two properties: autoregression and conditional

heteroskedasticity. Autoregression implies that it uses previous estimates of volatility to

calculate subsequent (future) values while conditional heteroskedasticity implies that the

volatility varies with time. The simplest ARCH model is the ARCH(1) model given by

(2.3.20) Yt = σtεt, σ
2
t = ω + αy2

t−1, t = 1, 2, · · · , T,

where ε′ts are independent identically distributed and εt ∼ N(0, 1). A general ARCH(p)

model is given by

(2.3.21) σ2
t = ω +

p∑
i=1

αiy
2
t−i

(see Rydberg (2000) and Engle (2001)).

ARCH models were later generalised by Bollerslev (1986) and have become to be known

as generalised ARCH (GARCH) models (see Bollerslev (1986)). The GARCH type of

models are widely used to model market returns. Other autoregressive models include

AutoRegressive Integrated Moving Average (ARIMA) models popularised by Box and

Jenkins (1976) (see Bhat (1984)). ARIMA models have been applied to forecast the

prices of electricity in Spanish and Californian markets (see Contreras et al (2003)). Other

ARCH-type models that have been developed in the recent past include the Exponential

GARCH, EGARCH, model and Heterogeneous ARCH, HARCH, model mentioned in

Rydberg (2000).
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2.3.6. General Random Walk Models and Other Models. Due to the efficient

market hypothesis asset prices are generally assumed to move randomly (Wilmott etal

(1995)). This implies that the past historical information is fully reflected in the present

price and that markets respond immediately to any new information about an asset. Thus

the price of an asset is effectively affected by the arrival of new information.

Suppose the price of an asset at any time t is S. Consider during a small time interval

dt in which the asset price changes from S to S + dS. Wilmott etal (1995) models the

corresponding return on the asset,
dS

S
, by decomposing the return into two components.

The first component is a measure of the average rate of growth, µ, of the asset price known

as drift. Over the time interval dt, this makes a contribution µdt to the return
dS

S
. The

drift is often a constant in simple models but in more complicated models, such as for

exchange rates, µ can be a function of S and t.

The second component measures the standard deviation of the returns. This models the

random change in the asset price in response to external effects such as unexpected news

and is represented by a random sample taken from a normal distribution with mean zero.

The contribution of this to
dS

S
is σdX, where σ is a number called volatility and the

quantity dX is the sample from a normal distribution. Putting these components together

leads to an equation similar to equation 2.3.3 called stochastic differential equation

(2.3.22)
dS

S
= σdX + µdt.

The stochastic differential equation is a particular example of a random walk model that

is often used to describe the price process of many assets. When the volatility is zero,

equation 2.3.22 reduces to an ordinary differential equation

(2.3.23)
dS

S
= µdt

which is solved to give an exponential growth in the value of the asset

(2.3.24) S = S0e
µ(t−t0),

where S0 is the value of the asset at t = t0. This implies that if σ = 0 the future price

of an asset can be predicted with certainty. However, in reality volatility is never zero.

Consequently the component σdX is certainly a feature of the asset price process. The

term dX is known as a Wiener process and has the following properties: dX is a random
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variable drawn from a normal distribution; the mean of dX is zero and the variance of dX

is dt.

There are other versions of the random walk model. For example, if Pt is the price of stock

at time t and let its residual be εt, Granger and Morgenstern (1970) propose a random

walk model written, in its simplest form, as

(2.3.25) Pt = Pt−1 + εt

where E[εt] = 0, cov[εt, εt−s] = 0, for all s 6= 0. The expression cov[εt, εt−s] = 0 implies

that the residuals whose mean is zero are uncorrelated with all previous residuals. In this

form, the implications of the random walk model is that the best predictor of the following

day’s price is the current price. More generally the best predictor of any future price is

the most recently available price. It is shown formally through reapplication of equation

(2.3.25) as follows. Using equation (2.3.25), it follows that

Pt+1 = Pt + εt+1

implies that

Pt+2 = Pt+1 + εt+2, Pt+3 = Pt+2 + εt+3

and finally

Pt+n = Pt + Σn
j=1εt+j.

(see Granger and Morgenstern (1970)).

Since E[εt] = 0 and cov[εt, εt−s] = 0, then E[Σn
j=1εt+j] = 0 and the result follows.

The model given by equation 2.3.22 fits real time data series very well especially equities

and indices (Wilmott etal (1995)). Although real data exhibit higher probability of large

rises or falls than the model predicts, the random walk model turns out to be the basis

for more sophisticated models such as the Mean Reverting Process and the Ornstein-

Uhlenbeck Process (see Neftci (1996)). Blasco et al (1997), in their study of the random

walk hypothesis in the Spanish stock market, conclude that while stock returns are not

independent and identically distributed, stock prices appeared to follow the random walk.

This view is also shared by many financial economists as well as statisticians (Malkiel

(2003)).

While there is very strong empirical evidence in favour of the random walk model, it is

not an absolutely perfect fit for all price series or over all time intervals. It appears valid
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for markets that have the characteristic of the stock market (Granger and Morgenstern

(1970)). For instance, in previous studies cotton prices did not appear to be following the

random walk hypothesis (Mandelbrot (1963)). Lo and MacKinlay (1988) reject the random

walk model for weekly returns for the entire sample period (1962 − 1982). They provide

evidence that stock prices do not follow random walks by using a simple specification test

based on variance estimators. Darrat and Zhong (2000) tested the random walk hypothesis

on daily stock price data of China’s two official stock markets (Shanghai and Shenzhen).

The results obtained did not support the random walk hypothesis. Another study that

does not support the random walk hypothesis was carried out by Niederhoffer (1965).

There are various other models that have been proposed which build on the independent

increments of returns. For instance, Praetz (1972) presents a scaled t-distribution model

which appears to be a good fit to weekly share price indices from the Sydney Stock

Exchange for the period 1958− 1966 (see Rydberg (2000)).

Another model of the discrete time type that has been proposed in recent times is the

Autoregressive Conditional Duration (ACD) model developed by Engle and Russell (see

Rydberg (2000) and Engle and Russell (1998)). In this model, the arrival of transactions

are described as a counting process and the duration between events follows a process of

the type

(2.3.26) Yi = ω + αxi−1 + βYt−1

for α ≥ 0, β ≥ 0, ω > 0 for all i, i = 1, 2, · · · , n where xi denotes the duration between

events at time ti−1 and ti. A thorough coverage of other models can be found in Rydberg

(2000)).



CHAPTER 3

The Double Gamma Model, Data and Methodology

The Double Gamma model proposed in this thesis studies the distribution of differences

between closing stock prices on successive days. Until recently, stock price differences have

been modeled as being either normal or log-normal (Brada et al (1965) and Mandelbrot

(1963)). However, normal quantile-quantile (Q − Q) plots for indices and stocks studied

reveal the contrary. This is shown in Appendix A.

3.1. The Data

The raw data for analysis consists of 25,786 daily observations of three major indices and

36,377 values of stock prices for six firms. The data comprises daily closing stock values

for major firms trading on the London Stock Exchange, New York Stock Exchange and

Tokyo Stock Exchange. Indices consist of Dow Jones Industrial Average, Japan’s Nikkei

225 and Financial Times 100 Index which are reviewed in the following subsection. Table

3.1 below summarises the nature of the data used in this thesis.

Table 3.1. Summary of sampled data

Index/Stock Sample Period Sample Size Country/Region

FTSE 02/04/1984 - 19/01/2007 5,761 U.K. (Europe)

Nikkei 225 04/01/1984 - 19/01/2007 5,672 Japan (Asia)

S&P 500 03/01/1950 - 19/01/2007 14,353 USA (America)

Sony Corporation 06/04/1983 - 19/01/2007 5,997 Japan (Asia)

Toyota Corporation 13/04/1993 - 19/01/2007 3,464 Japan (Asia)

Microsoft Corporation 13/03/1986 - 19/01/2007 5,261 USA (America)

General Motors 02/01/1962 - 19/01/2007 11,340 USA (America)

GlaxoSmithKline plc 09/07/1986 - 19/01/2007 5,179 UK (Europe)

Barclays plc 10/09/1986 - 19/01/2007 5,136 UK (Europe)

42
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The data set was downloaded from the finance subdirectory of the website ‘Yahoo.com’.

The sample period covered ranges from 1950 to January 2007 with varying commencement

dates. Data from developing countries has not been considered owing to the low level of

activity on stock exchange markets and stock data inaccessibility. Research has shown

that low volume and thinly traded markets are inappropriate for efficiency since they lack

liquidity and do not provide smooth transfer of information. Further, price indices in small

markets tend to exhibit inflated volatility thereby complicating statistical inference (see

Darrat and Zhong (2000)).

3.1.1. Overview of the selected indices and stocks.

• Financial Times 100 Index: The Financial Times 100 Index (FTSE 100) is

a share index that is commonly used as a benchmark for the performance of

stocks traded on the London Stock Exchange. The FTSE index consists of the

100 largest companies traded on the London Stock Exchange (based on market

capitalization). The companies in the list include BP, British Airways, Barclays

Bank, GlaxoSmithKline, Unilever and Vodafone just to mention a few. The stocks

represent about 80 percent of the value of all issues traded on the exchange. The

FTSE index is used as a benchmark for success of the British economy.

• Nikkei 225 Index: The Nikkei 225 Index is a stock market index for the Tokyo

Stock Exchange (TSE). It is composed of 225 leading stocks traded on the Tokyo

Stock Exchange. Major companies in this index include Sony Corporation, Sharp

Corporation, Toyota Motor Corporation and Japan Airlines Corporation.

• Standard and Poors 500: The Standard and Poors 500 (S&P 500) Index is a

market index based on a portfolio of 500 different stocks that are traded on the

New York Stock Exchange (NYSE), American Stock Exchange (AMEX), and the

Nasdaq National Market System. The 500 stocks is composed of 400 industrials,

40 utilities, 20 transportation companies, and 40 financial institutions. Compared

to the DJIA Index, the S&P 500 index is viewed as a better representation of the

US market as it incorporates more firms from a wide range of fields. These firms

include Chevron Corporation, Apple Computer, Cisco Systems, General Motors

and PepsiCo Inc.
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• Stocks: The stocks for Barclays plc and GlaxoSmithKline plc traded on the

London Stock Exchange are used. US stocks used are those for Microsoft

Corporation and General Motors while from the Tokyo Stock Exchange we use

stocks for Toyota Motor Corporation and Sony Corporation.

3.2. Model Specification

Under the Double Gamma model, we model the differences between the closing prices of

stock on day t and day t − 1, that is, Pt − Pt−1. The notation P (t) and P (t − 1) is used

interchangeably to mean Pt and Pt−1 respectively. Accordingly we define the following:

Let ∆Pt = Pt − Pt−1 be the change in closing price from day t− 1 to day t.

In particular, denote ∆Pt =




Xt = Pt − Pt−1 > 0 with probability P

Pt − Pt−1 = 0 with probability R

Yt = Pt − Pt−1 < 0 with probability Q

where P + R + Q = 1.

3.2.1. Model Assumptions. The proposed model is based on the following

assumptions:

(i) The process followed by Pt is a discrete time process.

(ii) ∆Pt are independent and identically distributed.

(iii) ∆Pt is independent of time t.

(iv) Xt ∼ Ga(α, β)

(v) Yt = −Xt

(vi) Variations in asset price are random.

(vii) The present price Pt possesses a Markov property.

(viii) On two successive trading days, the asset price can either increase or decrease, not

stay constant.

Owing to the nature of the data used, the closing prices can only be quoted at the end

of each trading day. Thus it is reasonable to assume that the process followed by Pt

is a discrete time process. Further, since all known information is used optimally by

market participants, variations in asset prices are random and that the present price Pt is

independent of all past prices (see section 1.3).
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Charts produced depicting the stock price changes P (t)− P (t− 1) shown in Appendix A

are revealing. A closer look at the histograms produced, it is tempting to conclude that

actual differences, P (t)−P (t−1) (positive and negative), suggest a normal distribution for

each of the indices and stocks. On the other hand, histograms of the absolute differences,

|P (t)−P (t− 1)|, for each index and stock suggest a distribution of the gamma type. (See

figure below and Appendix A, parts (b), (c) and (d)).

A common approach to testing the normal fit is the use of quantile-quantile (Q − Q)

plots. Parts (d) of the charts in Appendix A show normal Q−Q plots for the differences,

P (t)−P (t−1), for each of the indices and stocks. From Figure 3.1, showing the histogram

of absolute price differences and the Q−Q plot for the S&P 500 index, the deviations from

the straight line and thus from normality are obvious (see also parts (d) of each figure in

Appendix A).

Figure 3.1. Histogram of Absolute Price Differences and Q-Q Plot for S&P 500

It can also be seen from Figure 3.1 that the curved pattern with slopes increasing from left

to right in the histogram (on the left) for the absolute differences suggests that the data

distribution is skewed to the right. This is a feature that is synonymous with the gamma

distribution.

The last assumption is not completely true in the real world. However, it can be seen

from Appendix B that stock prices or values of indices are rarely constant. Over 5,761

trading days the FTSE index changed approximately 0.30% of the time while the S&P
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500 index remained constant 124 times over a period of 14,353 trading days representing

0.86% of the time. Overall, out of a total 62,163 daily closing values, stock prices and index

values remained constant 2,612 times which represents 4.2% of the time. It is, therefore,

reasonable to assume that stock prices either increase or decrease on any two succesive

trading days. Thus the assumption holds at least 95.8% of the time.

3.3. Methodology

Two models are considered for simulating stock prices. These are the lognormal model used

in the Black-Scholes option pricing model and the double gamma model that is proposed in

this thesis. Simulation is done using the Statistical Package for the Social Sciences (SPSS)

and Microsoft Excel. Charts are drawn using SPSS while random uniform numbers in the

interval [0, 1] are generated by the random number generator in Excel.

The methodology used depends on the model being simulated and the approach followed.

The modeling is carried out using three approaches. Two approaches have been used in

the simulation under the double gamma model while the third approach is modeled along

the lognormal distribution. These are outlined below.

(1) Approach 1: ∆Pt is modeled as following a modified double gamma distribution

with probability p of an “up” movement (i.e. Pt−Pt−1 > 0) and probability 1− p

of a “down” movement (i.e. Pt − Pt−1 < 0).

(2) Approach 2: ∆Pt is modeled as following the plain double gamma.

(3) Approach 3: ln
Pt

Pt−1

is modeled as following the normal distribution.

In each of the three approaches sample means of the differences between successive observed

closing prices are obtained. From the law of large numbers, the sample mean of the observed

∆Pt is used as an estimator of

E[∆Pt] = E[Pt − Pt−1] = αβ

of the modeled Gamma(α,
1

β
) ≡ Γ(α, β) for approaches 1 and 2 above.

3.3.1. Parameter estimation for the models. We use the gamma maximum

likelihood estimators that were highlighted in subsection (2.2.1) for approaches 1 and 2.
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The scale and location parameters of the gamma distribution are estimated using

α̂ =
∆Pt

2

s2
and β̂ =

s2

∆Pt

,

where s2 is sample variance of price differences while ∆Pt is sample mean of price

differences.

Random numbers are generated by the computer using the random number generator

command in Microsoft Excel. Using the parameters that have been estimated using

historical data, we use the Excel function ‘GAMMAINV’ to obtain a value for the gamma

probabilistic input.

Under approach 3, we use the procedure in Hull (1989), to estimate the volatility

empirically. Since ln
ST

St

is normally distributed with mean (µ − σ2

2
)(T − t) and variance

σ2(T − t) (see Hull (1989)), two parameters are estimated: µ and σ.

Assuming no intermediate cash flows such as dividends, let

ui = ln
Si

Si−1

,

where Si is the closing price of the asset at the end of the ith time-interval. As Si = Si−1e
ui

is the continuously compounded return in the ith interval, an unbiased estimator, s of the

standard deviation of the u′is is given by

s =

√
1

n− 1
Σn

i=1(ui − u)2,

where u is the mean of the u′is.

With the parameters estimated and random probabilities generated, we use the Excel

function ‘NORMINV’ to obtain a value for a probabilistic input that is normally

distributed. Then the estimated stock price under the lognormal model is obtained as

P̂t = Pt−1ẑt

where P̂t is the simulated stock price at time t, Pt−1 is the actual closing stock price at time

t − 1 while ẑt is the simulated probabilistic input under the normal distribution obtained

using the Excel command function ‘NORMINV’.

3.3.2. Model Properties. Using the assumption that the asset price can either

increase or decrease, then ∆Pt =


 Xt = Pt − Pt−1 > 0 with probability P

Yt = Pt − Pt−1 < 0 with probability Q
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since R = 0.

Thus the probability of an “up” movement and “down” movement would, respectively, be

redefined as

p =
P

P + Q
andq = 1− p =

Q

P + Q

Further as 0 < Xt < ∞ and −∞ < Yt < 0, then under the gamma distribution assumption,

Xt ∼ Ga(α1, β1) and

f(x) =
β1(β1x)α1−1e−β1x

Γα1

, 0 < x < ∞

while Yt ∼ Ga(α2, β2) and

g(y) =
β2(−β2y)α2−1eβ2y

Γα2

, −∞ < y < 0,

where x ≡ Xt and y ≡ Yt.

Let M be the number “up” movements (that is, when P (t) > P (t − 1)), and N be the

number of “down” movements in time interval [0, T ].

Let µ be the rate at which prices change such that the rate at which the “up” movements

occur is µp while the rate at which the “down” movements occur is µ(1 − p). Then we

define

(3.3.1) Pt = Pt−1 + Σt−1
k=1∆Pk = Pt−1 + ΣM

k=1∆Xk + ΣN
k=1∆Yk,

where M and N are random.

Let M and N be independent. Then by Theorem 2.1.18,

M ∼ Poiss((µp)T )

and

N ∼ Poiss((µ(1− p))T ).

Further since M and N are independent and using properties of the Poisson distribution

it follows that for period T ,

M + N ∼ Poiss(µT ).
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Let M and Xk be independent and N and Yk be independent. Then

E[Pt] = Pt−1 + E[M ]E[Xk] + E[N ]E[Yk]

= Pt−1 + E[M ]E[Xk]− E[N ]E[Xk]

= Pt−1 + E[Xk]{E[M ]− E[N ]}

= Pt−1 +
α

β
[µpT − (µ(1− p))T ]

= Pt−1 +
α

β
[µpT − µT + µpT ]

= Pt−1 +
α

β
(2µpT − µT )

= Pt−1 +
αµT

β
(2p− 1),

where

(i) the parameters for Ga(α, β) are obtainable from the historical data using maximum

likelihood estimators.

(ii) µ = M+N
T

, T is the time period.

(iii) p =
P

P + Q
.

Since µ = M+N
T

, then the model simplifies to

E[Pt] = Pt−1 +
α(M + N)

β
(2p− 1),

Further since under the last assumption the price does not remain constant, then over

period T the total number of ‘up’ and ‘down’ movements must be equal to the number of

trading days, that is, M + N = T . Thus

(3.3.2) E[Pt] = Pt−1 +
αT

β
(2p− 1).

This result is used to estimate future stock prices and index values. Hence

(3.3.3) P̂t = Pt−1 +
αT

β
(2p− 1).

Let the residual error at time t be denoted εt where

εt = P̂t − Pt.

The approximation is improved by introducing a shift factor. The shift factor is found by

taking the mean of absolute residual errors, εt−1, from the first trading day to day t − 1.
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This is used since it represents the average absolute deviations from the true value. The

shift factor is applied as follows:

• if on day t− 1, εt−1 < 0, then add εt−1 and thus P̂t = Pt−1 + αT
β

(2p− 1) + εt−1.

• if on day t−1, εt−1 > 0, then subtract εt−1 and thus P̂t = Pt−1 + αT
β

(2p− 1)−εt−1.

Hence

(3.3.4) P̂t = Pt−1 +
αT

β
(2p− 1)± εt−1.

In addition, with µ = M+N
T

specified, the probability density function of ∆Pt = Pt − Pt−1

would be estimated by the double gamma distribution given by

(3.3.5) f(∆Pt) =
1

2

|∆Pt − µ|α−1e
|∆Pt−µ|

β

βαΓα
,

where µ is the location parameter while α and β are shape and scale parameters

respectively.

3.3.3. Measuring Model Performance. To see how well a model performs, we

look at the relative errors generated by the models. Suppose P̂t is the stock price at time t

generated by the model and Pt is the actual or observed price on the market. The relative

error (RE) is calculated by

(3.3.6) RE =
|P̂t − Pt|

Pt

If the relative error (expressed in percentage) is small, it means the model gives a good

approximation to the stock price reflected on the market. Conversely, if the relative error is

big, then the model is considered to be a poor approximation to the market price. However,

apart from checking how close the model price is to the market price, it is also important to

check whether the model produces over- or underestimates to the market. In other words,

it is important to see when a model underprices and overprices a specific stock. To achieve

this, we modify the relative error formula to

(3.3.7) RE =
P̂t − Pt

Pt

A negative relative error then means that the model underprices the specific stock whereas

a positive relative error means that the model overprices the specific stock.
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The other approach is to look at the absolute value of the errors. The absolute values of

the errors are used to assess the magnitude of the error. The best model is the one that

results in least values of the absolute errors. The absolute value of the errors are given as

(3.3.8) E = |Pt − P̂t|

We use both approaches in the analysis of results obtained.

In order to assess the performance of the proposed model, simulation is carried for each

stock/index thirty (30) times. The estimate P̂t for each simulation is recorded and the

absolute errors ε = |Pt − P̂t| are calculated. The mean values of the errors and the

estimates P̂t are also calculated. The approach that results in the least value of the mean

errors is considered to be the best approach for modeling prices of stocks and indices that

have been studied.



CHAPTER 4

Results, Analysis and Conclusion

4.1. Results and Analysis

In this chapter, results that were simulated using the proposed double gamma model and

lognormal model as described in section 3.3 are presented and compared. The simulation

results can be found in Appendix C. In Appendix D, relative errors for all the stocks and

indices are presented. The relative errors given are for the last 34 days to present time t,

that is, 19th January 2007. Percentage relative errors may be obtained by multiplying by

100.

Table 4.1 shows partial simulated results obtained for Microsoft Corporation in comparison

with the actual closing stock price of 31.11 as recorded on 19 January 2007.

Table 4.1. Simulated Results for Microsoft Corporation

Simulation P̂t App. 1 Error App.1 P̂t App. 2 Error App. 2 P̂t App. 3 Error App. 3

1 31.8 0.7 34.0 2.9 33.3 2.19

2 32.3 1.2 31.2 0.1 32.1 0.99

3 32.7 1.8 32.0 0.9 34.9 3.79

4 29.8 1.5 29.9 1.2 33.3 2.19
...

...
...

...
...

...
...

...
...

...
...

...
...

...

28 34.0 2.9 33.4 2.3 33.0 1.89

29 36.4 5.3 40.1 9.0 33.4 2.29

30 33.7 2.6 33.1 2.0 32.2 1.09

Mean 33.0 3.5 33.5 2.9 33.6 2.5

Values

Considering the size of absolute errors for each approach, it can be seen that the lognormal

model outperforms the other approaches using the proposed double gamma modeling. As

52
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simulated results for Microsoft Corporation indicate, after 30 simulations approaches 1 and

2 gave average values of 33.0 and 33.5 respectively against the value of 33.6 obtained using

approach 3. However, the average values using approaches 1 and 2 are closer to the actual

recorded value than what approach 3 generates.

Approach 1 turned out to be the best in modeling the FTSE and Nikkei indices

outperforming the traditional lognormal model. While the actual FTSE index value on day

t (19th January 2007) was Pt = 6237.2, after 30 simulations approach 1 gave an average

value of P̂t = 6237.8 which is a very good approximation. On the other hand approach

2 outperformed the rest in modeling the values of the S&P 500 index. The predicted

value at time t given by the average was found to be P̂t = 1427.7 compared to the actual

value of 1430.5. However, both approaches 1 and 2 turned out to be extremely poor at

modeling some stock prices. The worst results are obtained particularly for General Motors,

GlaxoSmithkline, Sony and Toyota Corporation. However, the simulation results show that

approach 3, lognormal model, is appropriate for modeling prices of all stocks that were

studied. Table 4.2 summarises the ranking of each approach at modeling stocks/indices.

Table 4.2. Model Performance Ranking

Index/Stock Approach 1 Approach 2 Approach 3

FTSE 1 2 3

SP 500 2 1 3

GlaxoSmithKline 3 2 1

Microsoft Corp. 3 2 1

General Motors 3 2 1

Sony 3 2 1

Toyota Corp. 3 2 1

Barclays plc 3 2 1

Nikkei 1 3 2

While approaches 1 and 2 faired poorly at modeling prices of nearly all stocks, from the

results it can be observed that the poor results were extreme in cases where N > M (that

is, where the number of simulated ‘down’ movements were greater than the number of ‘up’
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movements. Simulation figures for General Motors and Sony Corporation in Appendix B

reflect this.

From the simulation results in Appendix B, it can be observed that the double gamma

approaches are more accurate in modeling high valued stocks and indices. This is evident

in the prediction of the FTSE and Nikkei indices by approach 1 and the prediction of the

S&P 500 index using approach 2. This is where the lognormal model performs very poorly.

One common feature of the stocks for which the lognormal model produced good estimates

is that all of them are lowly valued.

While the absolute error approach for assessing model performance may suggest some

weaknesses in approaches 1 and 2, the use of relative errors suggests otherwise. Results

of relative errors shown in Appendix D show that while the lognormal model is a better

predictor of all stocks, the other two approaches are still competitive. For instance approach

2 is not extremely bad in predicting stock prices for Barclays plc since the relative errors

are on average less than 5%. To illustrate this, partial relative errors for Barclays plc are

reproduced in table 4.3.

Table 4.3. Relative Errors for Barclays plc

Pt Actual P̂t App. 1 P̂t App. 2 P̂t App. 3 RE App. 1 RE App. 2 RE App. 3

59.4 67.688885 61.25519 56.988994 0.1395435 0.03123 0.040589

59.14 67.97722 61.54478 58.459572 0.1494288 0.04066 0.011505

59.43 88.275556 61.84436 58.92972 0.1488399 0.04063 0.008418

59.73 68.533891 62.10395 58.773339 0.1473948 0.03974 0.016016
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

53.89 62.557285 56.16242 56.28486 0.1608329 0.04217 0.04444

54.06 62.535621 56.14201 52.747384 0.1567817 0.03851 0.024281

54.04 61.643956 55.2561 56.746861 0.1407098 0.02242 0.05009

As Appendix D shows, relative errors relating to approaches 1 and 2 are large: at

least 10% for Sony Corporation stocks, more than 40% for both Toyota Corporation

and GlaxoSmithkline plc stocks and at least 20% for General Motors stocks. This is
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in agreement with our earlier observation. On the other hand the relative errors of about

1% for Microsoft Corporation under approach 2 and Nikkei under approach 1 suggest that

the double gamma performs very well. The relative errors of less than 1% for both S&P

500 under approaches 1 and 2 and FTSE under approach 1 confirm that the double gamma

model has effective prediction capability.

When p = 0.5,

E[Pt] = Pt−1 +
αµT

β
(2p− 1)

reduces to

E[Pt] = Pt−1

which confirms the notion that the best estimate of stock price at time t is its value at

time t − 1. This, however, did not arise in the study of the stocks and indices that were

used.

4.2. Conclusion

In mathematical modeling, assumptions are formulated to simplify the number of variables

in the problem. While this makes the analysis simpler but it, however, makes the model

less accurate. The double gamma model developed is supposed to be valid while the

assumptions that were made hold. In the real market place some of the assumptions may

not hold while others may hold. On the other hand, certain factors such as payment of

dividends that were not incorporated into the model may negatively impact on the results.

The model developed in this thesis is no exception.

Before developing the model, it was necessary to review the behaviour of the stock prices,

the financial market system and the justification for studying stock prices and indices.

This was done in Chapter 1. The unpredictable nature of stock prices provoked the need

to review processes that are random in nature called stochastic processes as well as methods

of estimating some important statistics representing such processes and simulation. Efforts

by other researchers in modeling stock prices and financial time series are also reviewed.

One of the models, the lognormal model of stock prices, is used as a comparator to the

model developed in this thesis. The concepts and models have been covered in Chapter 2.

The concepts covered are used in the development of the model in this thesis.
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In Chapter 3, the data is reviewed and the model is developed. The methodology used to

obtain the results is also explained. The results obtained are presented and analysed in

Chapter 4. The results show that the model developed has strong prediction capabilities

of indices and stock prices through Markov chain modeling. It was seen that the model

developed in this thesis outperformed the traditional lognormal model in modeling some

stocks or indices. However, due to the random nature of stock prices, deviations from

actual stock and index values are expected.

While the double gamma model has shown strong prediction capabilities of indices and

stocks, further improvements to the model can be made. One possible way would be to

increase the number of stocks and indices that are modeled. A few more stocks and indices

taken from different stock exchanges could be examined. The results of such studies would

assist in making modifications to the model.

Further since the model performed very well for two of the three indices, this may suggest

that it would be more applicable to indices than stocks. Thus more indices could be

studied to check whether the model would still perform very well. In addition, a few more

simulations could also help improve the proposed model compared to the thirty simulations

that were undertaken in this study.

The limitation of this study lies in two aspects. Firstly only those stock and index values

that are nonconstant can be modeled. Thus caution must be exercised for generalisation

of the results to other data. Secondly, there is need to have a large set of data values which

may somewhat be difficult to find. Without a reasonable amount of data available, the

model may not yield the expected results. Other assumptions, such as the price differences

being identically distributed, may not be valid due to the fact that data taken over a long

time range may have been exposed to different economic environments that may impact

on their distributions.

The gamma distribution provides a considerable flexibility as the distribution can take

a number of shapes. Thus what is required is the estimation of shape and location

parameters, α and β respectively. These parameters can be estimated from historical

prices of stocks and index values.

This study has in a way achieved the main objective and has also managed to set

the platform for further research in modeling stock prices and indices by exploring the
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distribution of the differences Pt−Pt−1. The degree of accuracy with which the model is able

to estimate index values provides the strongest hint that the double gamma distribution

can play a major role in modeling the stock market, in general, and indices, in particular.

Although this research focussed on stock prices and indices, it could be extended to

include the possibility of pricing options and incorporating other factors such as payment

of dividends into the model.
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APPENDIX B

Frequency of price changes

Index/Stock Number Frequency Frequency Frequency

of trading of ‘up’ of ‘down’ of ‘no’

days movements movements movement

FTSE 5,761 3027 2717 17

Nikkei 225 5,672 2,910 2,749 13

SP 500 14,353 7,564 6,665 124

Sony Corp. 5,997 2,713 2,877 407

Toyota Corp. 3,464 1,667 1,618 179

Microsoft Corp. 5,261 2,597 2,491 173

General Motors 11,340 5,212 5,426 702

GlaxoSmithKline plc 5,179 2,394 2,374 411

Barclays plc 5,136 2,348 2,202 586
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